
REPÚBLICA FEDERATIVA DO BRASIL GOVERNO DO ESTADO DO CEARÁ

SECRETARIA DOS RECURSOS HÍDRICOS - SRH/CE

PROJETO PILOTO DE GERENCIAMENTO DOS RECURSOS HÍDRICOS PROGERIRH - PILOTO

ESTUDOS DE VIABILIDADE TÉCNICA, AMBIENTAL, ECONÔMICA E FINANCEIRA DA BARRAGEM PATOS

Avaliação Técnico-Econômica-Financeira e Ambiental
RELATÓRIO GERAL

ÍNDICE

ÍNDICE

APRESENTAÇÃO	7
INTRODUÇÃO	9
FICHA TÉCNICA	12
LOCALIZAÇÃO E ACESSOS	15
I - VIABILIDADE TÉCNICA	19
1 - VISITA DE CAMPO	20
2 - LEVANTAMENTOS TOPOGRÁFICOS E PLANIALTIMÉTRICOS	22
2.1 - SERVIÇOS EXECUTADOS	23
2.2 - METODOLOGIA ADOTADA	23
2.2.1 - Implantação de marcos com coordenadas	23
2.2.2 - Cotas do eixo da barragem	23
2.2.3 - Locação, estaqueamento e nivelamento do eixo da barragem e da linha base	23
2.2.4 - Levantamento de seções transversais ao eixo da linha base	24
2.2.5 - Cálculos topográficos	
3 - DEFINIÇÃO DO N.A. MÁXIMO NORMAL DO RESERVATÓRIO	
4 - RESERVATÓRIO	
5 - ESTUDOS E INVESTIGAÇÕES GEOLÓGICAS	29
5.1 - ELEMENTOS DISPONÍVEIS	30
5.2 - GEOLOGIA	30
5.3 - ASPECTOS GEOLÓGICO-GEOTÉCNICOS LOCAIS	31
6 - ESTUDOS HIDROLÓGICOS E DE REGULARIZAÇÃO	32
6.1 - ESTUDO DA VAZÃO DE REGULARIZAÇÃO	33
6.2 - ESTUDO DA CHEIA DE PROJETO	34
6.2.1 - Metodologia Utilizada	34
6.2.2 - Hidrograma Unitário Triangular do SCS	34
6.2.3 - Hidrogramas das Cheias de Projeto	35
7 - ESTUDOS GEOTÉCNICOS	
7.1 - CARACTERÍSTICAS GEOTÉCNICAS DOS MATERIAIS DE EMPRÉSTIMO	39
7.1.1 - Solos	39
7.1.2 - Areia	39
7.1.3 - Pedreiras	
7.2 - FUNDAÇÃO DA BARRAGEM/VERTEDOURO	40
8 - ESTUDOS HIDRÁULICOS	
8.1 - VAZÃO PELO VERTEDOURO	42

	8.2 - BORDA LIVRE	45
	8.3 - COTA DA BARRAGEM	47
9 -	- DESCRIÇÃO DO ARRANJO GERAL DAS OBRAS	48
10) - BARRAGEM	50
11	I - VERTEDOURO	52
12	2 - TOMADA D'ÁGUA	54
13	3 - ADUTORA	56
	13.1 - JUSTIFICATIVA	_
	13.2 - OBJETIVO	57
	13.3 - SITUAÇÃO ATUAL DO ABASTECIMENTO	
	13.3.1 - População alvo	57
	13.4 - ESTUDO DE ALTERNATIVAS	59
	13.5 - ESTUDO POPULACIONAL	61
	13.6 - PARÂMETROS DE PROJETO	62
	13.7 - VAZÕES DE PROJETO	62
	13.8 - CONCEPÇÃO GERAL DO SISTEMA PROPOSTO	
	13.8.1 - Captação	
	13.8.2 - Estação Elevatória de Água Bruta	
	13.8.3 - Adutora de Água Bruta	
	13.8.4 - Estações de Bombeamento de Água Tratada	
	13.8.5 - Reservatórios de Distribuição	
	13.9 - SISTEMA PROPOSTO	
	13.9.1 - Fonte Hídrica	
	13.9.2 - Captação	69
	13.9.3 - Estação elevatória de água bruta	69
	13.9.4 - Estação de Tratamento de Água	
	13.9.5 - Estação de bombeamento de água tratada	
	13.9.6 - Adutora	
	13.9.7 - Reservação	
	I - CRONOGRAMA DE OBRAS	
	5 - ORÇAMENTO PARA IMPLANTAÇÃO DAS OBRAS	
	S - ANEXO (DESENHOS)	
II -	- VIABILIDADE FINANCEIRA E ECONÔMICA	91
1 -	- VIABILIDADE FINANCEIRA	93
	1.1 - CONSIDERAÇÕES INICIAIS	94
	1.2 - PROJEÇÃO DA POPULAÇÃO E DEMANDA ATUAL E FUTURA	94
	1.3 - PROJEÇÕES DE OFERTA	
	1.4 - TARIFA MÉDIA	94
	1.5 - RECEITAS	100

1.6 - CUSTOS	100
1.7 - FLUXOS DE RECEITAS E CUSTOS E RESULTADOS DA AVALIAÇÃO FINANCEIRA	100
1.8 - CUSTO DA ÁGUA	109
1.9 - IMPACTO FISCAL	109
2 - VIABILIDADE ECONÔMICA	112
2.1 - CONSIDERAÇÕES INICIAIS	113
2.2 - CRITÉRIOS BÁSICOS UTILIZADOS	113
2.3 - CUSTOS E BENEFÍCIOS ECONÔMICOS ASSOCIADOS AO ABASTECIMENTO	
ANEXOS	122
ANEXO I – CUSTOS DE O&M – SITUAÇÃO COM PROJETO	123
ANEXO II – RESULTADOS DO MODELO SIMOP	125
III - VIABILIDADE AMBIENTAL	133
1 - CONSIDERAÇÕES INICIAIS	134
2 - ASPECTOS LEGAIS E INSTITUCIONAIS	136
3 - O PROJETO	142
3.1 - IDENTIFICAÇÃO DO EMPREENDEDOR	143
3.2 - LOCALIZAÇÃO E ACESSOS	143
3.3 - OBJETIVOS E USOS MÚLTIPLOS	143
3.4 - ESTUDOS DE ALTERNATIVAS LOCACIONAIS	144
5.5 - DESCRIÇÃO E ARRANJO GERAL DAS OBRAS	147
4 - DIAGNÓSTICO AMBIENTAL	
4.1 - ÁREAS DE ABRANGÊNCIA	
4.1.1 - Área de Influência Física	150
4.1.2 - Área de Influência Funcional	
4.2 - MEIO ABIÓTICO	150
4.2.1 - Aspectos Geológicos e Geomorfológicos	150
4.2.1.1 - Geologia	150
4.2.1.2 - Geomorfologia	151
4.2.1.3 - Recursos Minerais	152
4.2.1.4 - Sismicidade Induzida	153
4.2.2 - Solos	154
4.2.2.1 - Caracterização dos Solos da Área do Empreendimento	
4.2.2.2 - Uso Atual dos Solos	156
4.2.3 - Clima	157
4.2.4 - Recursos Hídricos	158
4.2.5 - Recursos Hídricos Subterrâneos	
4.3 - MEIO BIÓTICO	160
4.3.1 - Flora	160
4.3.2 - Fauna	161

	4.3.3 - Unidades de Conservação	161
	4.4 - MEIO ANTRÓPICO	162
	4.4.1 - Área de influência Funcional	162
	4.4.1.1 - Aspectos Demográficos	162
	4.4.1.2 - Infra-estrutura Física e Social	163
	4.4.1.3 - Atividades Econômicas	165
	4.4.1.4 - Estrutura Fundiária	166
	4.4.2 - Área de Influência Física	166
	4.4.2.1 - Generalidades	166
	4.4.2.2 - Estrutura Fundiária	166
	4.4.2.3 - População Atingida	166
	4.4.2.4 - Terras Indígenas	167
	4.4.2.5 - Infra-Estruturas de Uso Público a serem Atingidas	167
	4.4.2.6 - Atividades Econômicas a serem Paralisadas	168
	4.4.2.7 - Patrimônio Cultural, Histórico, Arqueológico e Paleontológico	168
5	- IDENTIFICAÇÃO E AVALIAÇÃO DOS IMPACTOS AMBIENTAIS	169
	5.1 - METODOLOGIA ADOTADA	170
	5.2 - CHECKLIST DE AVALIAÇÃO DOS IMPACTOS	170
	5.3 - DESCRIÇÃO DOS IMPACTOS AMBIENTAIS IDENTIFICADOS	174
	5.3.1 - Impactos sobre o Meio Abiótico	174
	5.3.2 - Impactos sobre o Meio Biótico	176
	5.3.3 - Impactos sobre o Meio Antrópico	178
6	- PLANOS DE MEDIDAS MITIGADORAS E/OU COMPENSATÓRIAS	183
	6.1 - GENERALIDADES	184
	6.2 - PLANO DE DESMATAMENTO ZONEADO DA BACIA HIDRÁULICA	184
	6.3 - PLANO DE PROTEÇÃO E MANEJO DA FAUNA	186
	6.4 - PLANO DE RECUPERAÇÃO DAS ÁREAS DE JAZIDAS DE EMPRÉSTIMOS, BOTA- FORAS E CANTEIRO DE OBRAS	188
	6.4.1 - Generalidades	188
	6.4.2 - Reabilitação das Áreas de Jazidas de Empréstimos	189
	6.4.3 - Disposição Adequada da Infra-estrutura e Recomposição da Área do Canteiro de Obras.	
	6.5 - PLANO DE REMOÇÃO/RELOCAÇÃO DA INFRA-ESTRUTURA	
	6.6 - PLANO DE PEIXAMENTO DO RESERVATÓRIO	
	6.7 - ADOÇÃO DE MEDIDAS DE SEGURANÇA DO TRABALHO	
	6.8 - PROGRAMA DE EDUCAÇÃO AMBIENTAL	
	6.9 - PLANO DE REASSENTAMENTO DA POPULAÇÃO	
	6.9.1 - Generalidades	
	6.9.2 - Diretrizes a Serem Adotadas no Projeto de Reassentamento	
	6.9.3 - Identificação e Seleção de Áreas para Reassentamento	

6.9.4 - Estudo de Alternativas e Anteprojeto de Reassentamento	. 200
6.9.5 - Arcabouço Legal	. 201
6.9.6 - Programas de Reativação da Economia	. 201
6.9.7 - Programa de Implementação do Projeto de Reassentamento	. 202
6.10 - PLANO DE IDENTIFICAÇÃO E RESGATE DO PATRIMÔNIO ARQUEOLÓGICO E PALEONTOLÓGICO	. 202
7 - MONITORAMENTOS AMBIENTAIS E GESTÃO DOS RECURSOS HÍDRICOS	. 204
7.1 - GENERALIDADES	. 205
7.2 - GERENCIAMENTO DOS RECURSOS HÍDRICOS REPRESADOS/ESTABE-LECIMENTO DE OUTORGAS E TARIFAÇÃO D'ÁGUA	. 205
7.3 - PLANO DE MONITORAMENTO DA QUALIDADE DA ÁGUA REPRESADA	. 207
7.4 - PLANO DE MONITORAMENTO DO NÍVEL PIEZOMÉTRICO E DO RESERVATÓRIO	. 208
7.4.1 - Monitoramento do Nível Piezométrico	. 208
7.4.2 - Monitoramento do Nível do Reservatório	. 208
7.4.2 - Monitoramento do Nivel do Reservatorio	
	. 209
7.5 - PLANO DE MONITORAMENTO DA SEDIMENTAÇÃO NO RESERVATÓRIO	. 209 . 210
7.5 - PLANO DE MONITORAMENTO DA SEDIMENTAÇÃO NO RESERVATÓRIO 7.6 - PLANO DE DELIMITAÇÃO E ADMINISTRAÇÃO DA FAIXA DE PROTEÇÃO DO RESERVATÓRIO	. 209 . 210 . 210
7.5 - PLANO DE MONITORAMENTO DA SEDIMENTAÇÃO NO RESERVATÓRIO	. 209 . 210 . 210 . 210
7.5 - PLANO DE MONITORAMENTO DA SEDIMENTAÇÃO NO RESERVATÓRIO	. 209 . 210 . 210 . 210 . 210
7.5 - PLANO DE MONITORAMENTO DA SEDIMENTAÇÃO NO RESERVATÓRIO	. 209 . 210 . 210 . 210 . 210
7.5 - PLANO DE MONITORAMENTO DA SEDIMENTAÇÃO NO RESERVATÓRIO	. 209 . 210 . 210 . 210 . 210 . 211
7.5 - PLANO DE MONITORAMENTO DA SEDIMENTAÇÃO NO RESERVATÓRIO	. 209 . 210 . 210 . 210 . 211 . 212

APRESENTAÇÃO

APRESENTAÇÃO

O Consórcio ANB/HIDROSTUDIO, no âmbito do Contrato N.º001/PROGERIRH-PILOTO/SRH/2002, firmado com a Secretaria de Recursos Hídricos do Estado do Ceará e com base nas definições contidas no Edital, vem desenvolvendo os Estudos de Viabilidade Técnica, Ambiental, Econômica e Financeira da Barragem Patos, localizada no município de Nova Olinda, no Estado do Ceará.

Os referidos estudos serão apresentados através dos relatórios abaixo relacionados:

FASE I – Estudos Preliminares

- VOLUME 1 Condições Sócio-Econômicas e Ambientais da Área
 - Tomo 1.1 Relatório Preliminar
- VOLUME 2 Estudos de Alternativas Locacionais das Barragens e Adutoras
 - Tomo 2.1 Localização dos Eixos

FASE II - Desenvolvimento dos Estudos Básicos e dos Anteprojetos das Barragens e Adutoras

- VOLUME 1 Estudos Básicos
 - Tomo 1.1 Topografia
 - Tomo 1.2 Geologia e Geotecnia
 - Tomo 1.3 Hidrologia
 - Tomo 1.4 Aspectos Sócio-Econômicos
- VOLUME 2 Anteprojetos
 - Tomo 2.1 Relatório Geral
 - Tomo 2.2 Desenhos e Plantas

FASE III – Estudos de Viabilidade Ambiental (EVA)

- VOLUME 1 Estudos de Viabilidade Ambiental (EVA)
 - Tomo 1.1 Estudos Básicos e Diagnósticos Ambientais

FASE IV - Avaliação Econômica Financeira dos Projetos

- VOLUME 1 Viabilidade dos Projetos
 - Tomo 1.1 Avaliação Técnico-Econômica-Financeira e Ambiental

O presente documento refere-se ao **Relatório Final de Avaliação Técnico-Econômica-Financeira e Ambiental**, dos Estudos de Viabilidade Técnica, Ambiental, Econômica e Financeira da Barragem Patos, localizada no município de Nova Olinda, no Estado do Ceará.

INTRODUÇÃO

INTRODUÇÃO

Nos últimos anos, tem sido uma das preocupações máximas do Governo, dotar o Estado de uma infraestrutura hídrica capaz de atender as demandas das populações, quanto ao abastecimento de água. No último decênio muito tem sido realizado no setor. Além da criação de todo um aparelhamento institucional, vem dedicando-se o Governo na execução de obras, através de programa específico, tais como o PROURB e o PROGERIRH que visam tanto fortalecer o sistema comunitário municipal, como equacionar e resolver os problemas de abastecimento de água das populações.

Este trabalho trata dos Estudos de Viabilidade Técnica, Ambiental, Econômica e Financeira da Barragem Patos, localizada no município de Nova Olinda, no Estado do Ceará.

O Estado do Ceará tem desenvolvido um extenso programa de recursos hídricos que inclui, desde a mobilização de água através da perfuração de poços ou em reservatórios, até sua distribuição às populações, através de adutoras, após tratamento para torná-la potável. O armazenamento de água para as populações e outros usos no Estado, historicamente, é feito através de mananciais artificiais constituídos por barramentos de rios, formando os açudes. No passado a construção destes reservatórios, tinha sempre um caráter emergencial, isto é, eles eram implantados sempre que se instalava uma seca mais prolongada. Nos anos de pluviometria normal, praticamente não se exercia essa atividade de modo continuado. Os açudes públicos eram construídos em locais muitas vezes não estratégicos, face à localização dos maiores contingentes de usuários, deixando-se de levar em conta outros fatores importantes, os quais só tiveram maior destaque com criação, o desenvolvimento e o debate dos aspectos ambientais.

Com o crescimento mais acelerado da população a partir da década de 1940, e sua concentração nas cidades, iniciada nos anos 60, o problema do abastecimento de água, no Estado, passou a ser encarado de modo a atender a requisitos mais técnicos tais como a localização dos açudes relativamente às cidades e às aglomerações rurais. Também tiveram um grande incremento os usos múltiplos da água, a qual passou a ser encarada como um bem econômico, sendo mais largamente utilizada, notadamente na agricultura irrigada, pecuária, piscicultura a nas atividades de lazer. Este aumento de consumo aliado às irregularidade pluviométricas, induziu o governo do Ceará, a partir do final da década dos anos 80, instituir programas que tratam a questão hídrica de modo racional, com continuidade e procurando sempre conferir um caráter de sustentabilidade as iniciativas do setor, podendo assim assegurar um desenvolvimento mais equilibrado do Estado.

Diante dessa realidade, a partir de 1987 o Governo Estadual vem institucionalizando a implementação de políticas públicas destinadas a encaminhar a questão da água. Assim, foram criados a partir da Secretaria dos Recursos Hídricos – SRH, a Superintendência de Obras Hidráulicas – SOHIDRA e a Companhia de Gestão dos Recursos Hídricos do Estado do Ceará – COGERH; foram também elaborados o Plano Estadual de Recursos Hídricos – PERH e o Fundo Estadual de Recursos Hídricos – FUNORH.

O estudo objeto deste trabalho, se insere nas ações que o governo estadual está implantando em todo o território cearense, o qual consiste na construção de novos barramentos permanentes, de portes médios, e de adutoras que conduzam a água até as cidades, de modo a dotar os centros urbanos do interior de fontes de água seguras, que garantam o abastecimento nos períodos secos.

Atualmente, as ações empreendidas pelo Governo do Estado, no tocante a construção de obras hídricas, devem satisfazer a critérios técnicos, ambientais e sócio-econômicos, antes de terem garantido recursos para suas implantações.

O estudo objeto deste trabalho é uma das etapas deste processo de seleção de locais para obras hídricas e da comprovação de suas viabilidades técnica, financeira e econômica, além da avaliação das condições ambientais que advirão com a concretização dessas obras.

Nesse trabalho, buscamos estudar mais detalhadamente, as alternativas de atendimento às demandas de água junto às cidades e aglomerados urbanos que se situam nas áreas de influência direta destes reservatórios, e subsidiariamente atender as necessidades de promover o desenvolvimento de atividades econômicas, através da irrigação de áreas estrategicamente situadas em relação aos açudes, da piscicultura intensiva e promoção de atividades de lazer.

Apresentamos, em seguida, uma caracterização da região em estudo, a nível municipal e a nível local, onde os dados apresentados refletem a realidade atual, uma vez que eles foram colhidos recentemente, durante viagem de inspeção aos municípios e povoados situados na área de influência e nos próprios locais dos eixos barráveis.

FICHA TÉCNICA

BARRAGEM PATOS

_		TECNICA	\neg	DDD	ICTO
_	п.на		1 1()	PRU.	11 1 ()

Capacidade do Reservatório (Cota 448 m)2,221 x 10⁶m³;

Barragem

TipoBarragem de CCR;

Cota do coroamento.......449,70 m;

Vertedouro

Tomada D'Água

jusante;

Descarga regularizada (Q90% de garantia)0,022 m3/s;

Adutora

Objetivos................Atender à população urbana de Nova Olinda e comunidades difusas;

Localização......Município de Nova Olinda (CE);

Desnível geométrico 28,50 m;

Vazão de projeto	30,61 l/s;
Fonte hídrica	Açude Patos;
Obra de Captação (Flutuante)	
- Número de conjuntos elevatórios	01 + 01 reserva;
- Vazão máx. por conjunto	2.645 m3/dia;
- Diâmetro do barrilete de sucção	200 mm;
- Diâmetro do barrilete de recalque	200 mm;
- Nível máximo operacional	cota de sangria = 448 m;
- Nível mínimo operacional	cota de alerta = 436 m;
Estação Elevatória de Água Bruta	
- Número de conjuntos	01 + 01 reserva;
- Vazão por conjunto	110,196 m3/h;
- Altura manométrica estimada	30 mca;
- Potência de cada conjunto	20,41 cv;
Estação de Tratamento de Água	
- Vazão	115,0 m3/h;
- Altura da câmara de carga	7,0 m;
- Diâmetro da câmara de carga	1,0 m;
- Diâmetro do filtro ascendente	2,0 m;
- Altura total do filtro ascendente	3,50 m;
- Capacidade do reservatório apoiado de água tratada.	20 m3;
Estação de bombeamento de água tratada	
- Número de conjuntos eletrobombas	01 + 01 (reserva);
- Vazão por conjunto	110,196 m3/h;
- Altura manométrica total	57,73 mca;
- Potência por conjunto	39,88 cv.
Reservação	
- Localização	Município de Nova Olinda (CE);
- Capacidade	882 m3.

LOCALIZAÇÃO E ACESSOS

LOCALIZAÇÃO E ACESSOS

O município de Nova Olinda localiza-se na região Sul do Estado do Ceará com latitude 07°05'30" S e longitude 39°40'50" W, ocupa uma área de 290,7 Km², com altitude média da sede em torno de 445 m acima do nível do mar. Limita-se ao Norte com Farias Brito e Altaneira, ao Sul com Santana do Cariri, ao Leste com Crato e Farias Brito e a Oeste com Santana do Cariri.

O acesso à cidade de Nova Olinda pode ser feito, a partir de Fortaleza, da seguinte forma:

Segue-se pela BR-116 no sentido Norte-Sul até a cidade de Milagres (563 Km). Daí, segue-se na direção Oeste, pela CE-293, percorrendo uma distância de 47 Km até a cidade de Barbalha. Desta, segue-se pela CE-060 por uma distância de 10,0 Km até a cidade de Juazeiro do Norte. Desta, segue-se pela Transitória 292/122 percorrendo uma distância de 11 Km até chegar à cidade do Crato. Desta, segue-se pela transitória 494/122 (sentido Exu) percorrendo uma distância de 9,0 Km até chegar ao Triângulo de Nova Olinda. Deste ponto, segue-se pela CE-292 (à direita), percorrendo uma distância de 29 Km até chegar na referida cidade. O percurso total estimado é de aproximadamente 669 Km.

Para deslocar-se até o eixo barrável do açude Patos, o acesso pode ser feito, a partir da cidade de Nova Olinda, da seguinte forma:

Segue-se por uma estrada vicinal no sentido Norte, uma distância de 3,5 Km até chegar à comunidade denominada Patos (localizada na bacia hidráulica). Desta segue-se a pé pelo leito do rio (sentido montante - jusante) percorrendo uma distância de 0,50 Km até chegar ao eixo barrável já estudado. Deste, continua-se seguindo pelo leito do rio, percorrendo uma distância de 1,30 Km até chegar ao 2° eixo barrável.

As figuras apresentadas a seguir, mostram o mapa de localização e acessos no contexto estadual e o mapa do município de Nova Olinda.

Mapa de Localização no Contexto Estadual

Mapa Municipal

I - VIABILIDADE TÉCNICA

1 - VISITA DE CAMPO

1 - VISITA DE CAMPO

De forma a se obter informações complementares aos dados disponíveis - necessárias para a identificação de alternativas de barramento, vertedouro, condições de fundação, materiais naturais de construção, e programação dos serviços de campo, foi realizada, no mês de abril de 2002, uma visita de reconhecimento ao local da barragem.

O reconhecimento foi realizado no período de chuvas, com o local apresentando densa cobertura vegetal.

Os trabalhos desenvolvidos nesta etapa tiveram, por base, os estudos de Hierarquização de Barragens realizados pelo PROGERIRH - Programa de Gerenciamento e Integração dos Recursos Hídricos do Estado do Ceará, de 1997, e da proposta técnica apresentada pelo Consórcio ANB/HIDROSTUDIO, para os Estudos de Viabilidade Técnica, Ambiental, Econômica e Financeira das barragens.

Após a análise da documentação existente, procedeu-se um reconhecimento de campo que consistiu de caminhamento pelo leito do riacho, ombreiras do barramento, através de estradas, caminhos e abertura de picadas quando possível, de forma a se obter informações quanto a:

- espessura e natureza dos solos
- existência de afloramentos de rocha e seu grau de alteração
- estruturas geológicas como falhamentos, dobramentos, xistosidade, acamamentos, zonas de cisalhamento, juntas e fraturas, obtendo-se, sempre que possível, suas características como: atitude, tipo de preenchimento, espaçamento, rugosidade, etc.

Do ponto de vista geotécnico, foram observadas as condições de fundação do maciço da barragem e vertedouro, estabilidade de taludes naturais e escavados, e disponibilidade de materiais naturais de construção.

No local foram escolhidos três eixos alternativos de barragens, com seus respectivos vertedouros. Das três alternativas de eixo analisadas para o local, apenas uma foi indicada para o estudo de viabilidade.

A partir da visita de campo foi feita a programação dos serviços de levantamento topográfico e investigações geológico-geotécnicas.

2 - LEVANTAMENTOS TOPOGRÁFICOS E PLANIALTIMÉTRICOS

2 - LEVANTAMENTOS TOPOGRÁFICOS E PLANIALTIMÉTRICOS

2.1 - SERVIÇOS EXECUTADOS

Foram executados os seguintes serviços topográficos:

- Levantamento de coordenadas do eixo barrável e vertedouro, através do uso de GPS;
- Locação e nivelamento do eixo da barragem, com estaqueamento a cada 10m (unid.(est.)=20,00m) –
 Estaca 00(-10,00m) à Estaca 05+14,00m, totalizando uma extensão de 124,00 metros;
- Locação e nivelamento do eixo transversal ao eixo barrável (linha base), com estaqueamento variável – Estaca E3 à Estaca M1(montante) e Estaca E3 à Estaca J2 (jusante), numa extensão total de 52,00 metros;
- Levantamento de seções transversais, ao longo da linha base, com faixa variando de 72m a 137m, com distância variável num número de 03 seções levantadas, com a respectiva extensão de 748,00 metros;
- Levantamento da calha do rio através da obtenção de diversos pontos plani-altimétricos, levantados taqueometricamente por irradiação;

2.2 - METODOLOGIA ADOTADA

2.2.1 - Implantação de marcos com coordenadas

Foram materializados marcos na linha base (transversal ao eixo da barragem), conforme apresenta-se na planta baixa. As coordenadas verdadeiras destes marcos foram obtidas através da utilização de rastreadores de satélites GPS, marca Garmim, dispondo de 12 canais, freqüência L1e código CA. O datum horizontal de referência é o CÓRREGO ALEGRE - MG.

2.2.2 - Cotas do eixo da barragem

A cota geométrica referenciada ao sistema altimétrico nacional, foi obtida através de restituição com o apoio das coordenadas levantadas em campo. A partir da cota obtida e dos elementos de campo, foram calculadas as demais cotas.

2.2.3 - Locação, estaqueamento e nivelamento do eixo da barragem e da linha base

O referido eixo barrável foi levantado com estaca a cada 10m (unid.(est.)=20m). Quanto à linha base, o estaqueamento variou entre 10 e 20m, levando-se em conta o levantamento dos pontos notáveis; As estacas foram então niveladas, enquadrando-se na precisão tolerável de 10mm \sqrt{K} , onde k = Km nivelados. Este serviço foi executado através do uso de estação total TopCon - GTS 229 e prisma.

2.2.4 - Levantamento de seções transversais ao eixo da linha base

Nas estacas do eixo da linha base, foram abertas seções transversais variando de acordo com suas respectivas necessidades, com pontos levantados variando em função dos pontos críticos que pudessem demonstrar o terreno natural.

2.2.5 - Cálculos topográficos

Para dar maior precisão e agilidade, todos os cálculos topográficos realizados neste estudo foram feitos a partir da utilização de um SOFTWARE específico para tais serviços, denominado SOFTDESK.

3 - DEFINIÇÃO DO N.A. MÁXIMO NORMAL DO RESERVATÓRIO

3 - DEFINIÇÃO DO N.A. MÁXIMO NORMAL DO RESERVATÓRIO

Com base na visita de campo e nos levantamentos topográficos e de restituição aerofotogramétrica, percebeu-se que o barramento poderia ter condições topográficas de fechamento nas ombreiras em cotas superiores à cota 470,00 m, sendo que da cota 450,00 m para baixo o vale é mais encaixado do que desta cota para cima.

Os estudos prévios elaborados e as avaliações de capacidade de regularização de vazão mostraram também não ser interessante ter-se um barramento acima da cota 450,00 m. Assim, estabeleceu-se a cota do nível d'água máximo normal do reservatório como sendo **448,00 m.**

4 - RESERVATÓRIO

4 - RESERVATÓRIO

O reservatório a ser formado com a construção da Barragem Patos, cuja planta pode ser vista no Desenho no PT-01, ocupará uma área em sua superfície, para o nível d'água máximo normal de 448 m, igual a 0,348 x 10⁶ m², acumulado um volume total nesta cota de 2,221 x 10⁶ m3.

No Desenho n.º PT-05 é apresentada a curva cota x área x volume do reservatório de Patos.

Com base na série de volumes afluentes médios mensais do período histórico de 1912 a 1988, verificase que o reservatório apresenta uma relativa capacidade de regularização, equivalente a 54,8% da vazão média, com 3,6% de sangria, considerando-se nível de garantia de 90%, e que o seu regime de regularização é plurianual.

5 - ESTUDOS E INVESTIGAÇÕES GEOLÓGICAS

5 - ESTUDOS E INVESTIGAÇÕES GEOLÓGICAS

5.1 - ELEMENTOS DISPONÍVEIS

Para os estudos geológico-geotécnicos foram utilizados os documentos disponíveis e realizadas investigações de campo, conforme relacionado a seguir:

- Mapa da Bacia Hidráulica com Resenha Fotográfica, elaborado com base em levantamento da SUDENE na escala 1:25.000
- Mapa da Bacia Hidráulica com curvas de nível (5 x 5m), produzido pela ANB, na escala 1:10.000
- Reconhecimento geológico-geotécnico de campo
- Quatro sondagens a pá e picareta, denominadas SPP-01 a SPP-04, realizadas no eixo da barragem, em ambas as ombreiras

5.2 - GEOLOGIA

O vale do riacho Patos é do tipo em "V", bastante encaixado, de encostas muito íngremes. Termina em um pequeno "cannyon", com desnível de 15 a 20 metros, antes do seu desemboque no rio Cariús.

A Geologia local é representada pelos sedimentos do Grupo Araripe, de idade cretácica. As formações Exú e Santana, que compõem esse grupo, podem estar presentes no vale do riacho Patos, devendo predominar os arenitos da Formação Exú, com intercalações caulínicas e sílticas, e podendo ocorrer, também, siltitos calcíferos e calco-areníticos.

Os afloramentos de rocha observados são representados por arenito cinzento escuro, de granulometria fina, silicificado e extremamente duro, com comportamento e parâmetros de resistência de rocha cristalina sã. Apresenta acamamento bastante conspícuo, com atitudes EW / 30 a 70N e N55E / 60SE, onde se instalam as fraturas.

As superfícies das fraturas e dos acamamentos são onduladas, rugosas e irregulares, muitas vezes crenuladas, e ocorrem veios e preenchimentos silicáticos. Na superfície dos afloramentos, foram registradas estruturas abertas por alívio de tensões e, eventualmente, dissolução de preenchimento calcítico.

Nos sítios alternativos de barramento, não foram observados depósitos de aluvião. As encostas do vale apresentam pequena ou nenhuma cobertura de solo residual, e ocorrem corpos de tálus de forma generalizada, aparentemente com pequenas espessuras.

5.3 - ASPECTOS GEOLÓGICO-GEOTÉCNICOS LOCAIS

O sítio da barragem localiza-se em trecho estrangulado do vale, com encostas muito íngremes e arenito aflorante em todo o leito do riacho e parte inferior das ombreiras. Situa-se a menos de 300 metros do rio Cariús.

As estruturas observadas no arenito são representadas pelo acamamento e fraturas coincidentes com o mesmo, de freqüência baixa ou ocasional. Têm direção geral N55E, com mergulho da ordem de 60° para jusante (SE). Embora a atitude das estruturas seja desfavorável, a superfície das mesmas se apresenta rugosa, ondulada e irregular, quase sempre selada, com parâmetros geomecânicos de resistência provavelmente elevados e, talvez, baixas permeabilidades.

Na superfície de rocha aflorante, onde foi possível o acesso e inspeção, não foi constatada a existência de falha geológica, e o caráter irregular e assimétrico do "cannyon" faz supor que o riacho não tenha se afeiçoado a alguma estrutura importante, tendo apenas esculpido zonas com menor grau de silicificação para se insinuar. Cerca de 50 metros a montante, na margem esquerda, foram registradas fraturas abertas no topo do maciço rochoso, indicativas de alívio de tensões e eventual dissolução de minerais carbonáticos.

As ombreiras apresentam matacões à superfície, indicativos de depósitos de tálus pouco espessos, dado a alta declividade das encostas. As sondagens a pá e picareta indicaram a presença de solos provenientes da alteração do arenito, de composição silto-areno-argilosa e coloração amarela ou vermelha, cujas espessuras não ultrapassam 1,30 metros.

O sítio da barragem localiza-se em trecho estrangulado do vale, com encostas muito íngremes e arenito aflorante em todo o leito do riacho e parte inferior das ombreiras. Situa-se a menos de 300 metros do rio Cariús.

As estruturas observadas no arenito são representadas pelo acamamento e fraturas coincidentes com o mesmo, de freqüência baixa ou ocasional. Têm direção geral N55E, com mergulho da ordem de 60° para jusante (SE). Embora a atitude das estruturas seja desfavorável, a superfície das mesmas se apresenta rugosa, ondulada e irregular, quase sempre selada, com parâmetros geomecânicos de resistência provavelmente elevados e, talvez, baixas permeabilidades.

Na superfície de rocha aflorante, onde foi possível o acesso e inspeção, não foi constatada a existência de falha geológica, e o caráter irregular e assimétrico do "cannyon" faz supor que o riacho não tenha se afeiçoado a alguma estrutura importante, tendo apenas esculpido zonas com menor grau de silicificação para se insinuar. Cerca de 50 metros a montante, na margem esquerda, foram registradas fraturas abertas no topo do maciço rochoso, indicativas de alívio de tensões e eventual dissolução de minerais carbonáticos.

As ombreiras apresentam matacões à superfície, indicativos de depósitos de tálus pouco espessos, dado a alta declividade das encostas. As sondagens a pá e picareta indicaram a presença de solos provenientes da alteração do arenito, de composição silto-areno-argilosa e coloração amarela ou vermelha, cujas espessuras não ultrapassam 1,30 metros.

6 - ESTUDOS HIDROLÓGICOS E DE REGULARIZAÇÃO

6 - ESTUDOS HIDROLÓGICOS E DE REGULARIZAÇÃO

Os estudos hidrológicos e de regularização estão apresentados no Relatório de Hidrologia - Tomo 1.3, Fase II - Desenvolvimento dos Estudos Básicos e dos Anteprojetos das Barragens e Adutoras, Volume 1 - Estudos Básicos.

Neste Relatório Geral apresenta-se, de maneira a facilitar a compreensão dos dimensionamentos efetuados, os resultados obtidos a partir dos estudos hidrológicos, a saber, as vazões regularizadas e as vazões das cheias de projeto.

6.1 - ESTUDO DA VAZÃO DE REGULARIZAÇÃO

Utilizando a equação do balanço hídrico, os dados de precipitação e evaporação mensais da estação meteorológica Barbalha, bem como a curva Cota x Volume do Açude Patos e suas vazões mensais afluentes, determinou-se sua curva de garantia (%) x Vazão regularizada (hm3/ano) para a capacidade de 2,221 hm3 (cota = 448 m). A Tabela 6.1 e a Figura 6.1 apresentam os valores de Garantia x Vazão regularizada do Açude Patos.

Tabela 6.1 - Garantia versus Vazão regularizada do Açude Patos, para a Capacidade de 2,221 hm3 (cota = 448 m)

SANGRIA ANUAL (%)	SANGRIA (%)	GARANTIA (%)	VAZÃO REGULARIZADA (HM3/ANO)
35,1	8,0	100,0	0,498480
29,9	6,9	99,0	0,522600
24,7	4,7	95,0	0,613920
19,5	3,6	90,0	0,707040
18,2	3,2	85,0	0,786960

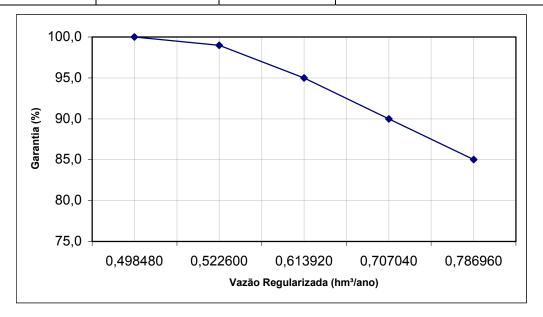


Figura 6.1 - Curva Garantia versus Vazão Regularizada do Açude Patos, para a Capacidade de 2,221hm3 (cota = 448 m).

6.2 - ESTUDO DA CHEIA DE PROJETO

A segurança e a economia de um açude está diretamente relacionada com a obtenção da cheia de projeto, a qual permitirá o dimensionamento adequado de seu sangradouro. Em açudes, onde há o perigo de grandes prejuízos e de perdas humanas, geralmente utilizam-se as cheias máximas milenares ou decamilenares.

6.2.1 - Metodologia Utilizada

A inexistência de série de dados fluviográficos de boa qualidade e de razoável extensão, torna inexorável a utilização de métodos indiretos na determinação da cheia de projeto do açude estudado.

Adotar-se-á, no presente estudo, a metodologia indireta do HEC-1, a qual se baseia em seu hidrograma unitário triangular do Soil Conservation Service e no parâmetro CN (Curve Number). Esse parâmetro CN representa o complexo solo-vegetação e seu relacionamento com a potencialidade da bacia na formação de picos de cheias.

Para a bacia do Açude Patos, obteve-se o valor CN igual a 73.

6.2.2 - Hidrograma Unitário Triangular do SCS

Para a obtenção do Hidrograma Unitário Triangular - HUT - , é necessária a determinação do tempo de concentração da bacia estudada, tc, o que foi obtido pela fórmula de Kirpich:

$$t_c = 57x(L^3/H)^{0.387} = 57X(3.49/74.92)^{0.387} = 45.65 \,\text{min.} = 0.76 \,\text{horas}$$

onde:

tc - tempo de concentração, em minutos;

L - comprimento do curso curso d'água principal, em km; e

H - desnível entre as cotas da cabeceira e do exutório da bacia, em m.

Após o cálculo do tempo de concentração - tc, em horas, foram determinados os três parâmetros básicos do HUT do SCS, quais sejam:

$$t_r = t_c / 6 = 0.76 / 6 \cong 0.13 horas$$

$$t_p = 0.5xt_r + 0.6xt_c = 0.5x0.13 + 0.6x0.76 \cong 0.52horas$$

$$t_b = 2,667xt_p = 2,66x0,52 \cong 1,39 horas$$

$$Q_p = \frac{0,2081xA_{bacia}x1mm}{tp} = \frac{0,2081x8,463}{0,52} \cong 3,38\underline{m}^3/\underline{s}$$

onde:

tr - duração da chuva efetiva unitária do HUT, em horas;

tp - tempo decorrido até a vazão de pico do HUT, Qp, em horas;

tb - tempo de base do HUT, em horas; e

Qp - vazão de pico correspondente à chuva efetiva unitária de 1mm, em m³/s.

Na Figura 6.2 é mostrado o HUT de 0,13 horas do SCS, para o caso da bacia do Açude Patos.

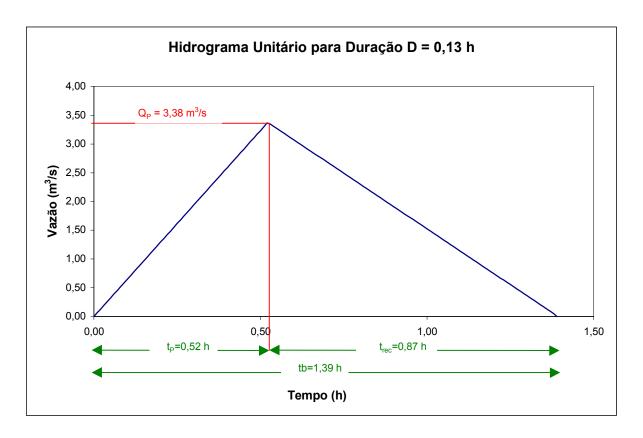


Figura 6.2 - Hidrograma unitário triangular do SCS para duração de 0,13 horas

6.2.3 - Hidrogramas das Cheias de Projeto

Para a obtenção dos hidrogramas das cheias de projeto, correspondentes aos tempos de retorno de 1.000 e 10.000 anos, utilizando a metodologia do HEC-1, tornou-se necessário, inicialmente, a determinação do hietograma efetivo balanceado com duração igual ao tempo de concentração da bacia estudada, para os referidos períodos de retorno.

As chuvas intensas na bacia foram obtidas através da metodologia de TABORGA-TORRICO, conforme descrito anteriormente.

As chuvas intensas efetivas na bacia foram obtidas através da equação do SCS, em unidades do S.I.:

$$P_{efetiva} = [P - (5080/CN) + 50.9]^2$$

$$[P + (20320/CN) - 203,2]$$

onde:

Pefetiva - chuva intensa efetiva na bacia, em mm;

P - chuva intensa na bacia, em mm; e

CN - parâmetro CN - "Curve Number" - do SCS.

Com o CN = 73 - obtido anteriormente - da bacia estudada, obtiveram-se as chuvas intensas efetivas para os tempos de retorno escolhidos.

Tabela 6.2 - Cálculos do hietograma efetivo balanceado da bacia do Açude Patos, para duração igual ao tempo de concentração e período de retorno de 1.000 anos

D(h)	P _{acumulada} (mm)	P _{efetiva acumulada} (mm)	P _{efetiva} (mm)	P _{efetiva ordenada} (mm)	P _{efetiva balanceada} (mm)
0,13	32,09	1,65	1,65	1,65	3,79
0,25	53,97	9,59	7,94	3,79	5,34
0,38	66,77	16,22	6,63	4,44	7,94
0,51	75,85	21,56	5,34	5,34	6,63
0,64	82,89	26,00	4,44	6,63	4,44
0,76	88,65	29,79	3,79	7,94	1,65

Tabela 6.3 - Cálculos do hietograma efetivo balanceado da bacia do Açude Patos, para duração igual ao tempo de concentração e período de retorno de 10.000 anos

D(h)	P _{acumulada} (mm)	P _{efetiva acumulada} (mm)	P _{efetiva} (mm)	P _{efetiva ordenada} (mm)	P _{efetiva balanceada} (mm)
0,13	37,05	2,97	2,97	2,97	4,71
0,25	62,30	13,78	1,80	4,71	6,75
0,38	77,08	22,32	8,54	5,55	10,80
0,51	87,56	29,07	6,75	6,75	8,54
0,64	95,69	34,61	5,55	8,54	5,55
0,76	102,33	39,32	4,71	10,80	2,97

Aplicando os hietogramas efetivos balanceados da bacia do Açude Patos ao H.U.T. de 0,65 horas de duração da bacia, obtiveram-se os hidrogramas das cheias de projeto, para os tempos de retorno de 1.000 e 10.000 anos, conforme mostrados na Figura 6.3.

Na Tabela 6.4 são apresentadas as vazões de pico dos hidrogramas das cheias de projeto, para os tempos de retorno de 1.000 e 10.000 anos.

Tabela 6.4 - Vazões de pico dos hidrogramas das cheias de projeto para os tempos de retorno de 1.000 e 10.000 anos

Tempo de Retorno (anos)	Vazões de Pico dos Hidrogramas das Cheias de Projeto (m3/s)
1.00	79,27
10.000	104,12

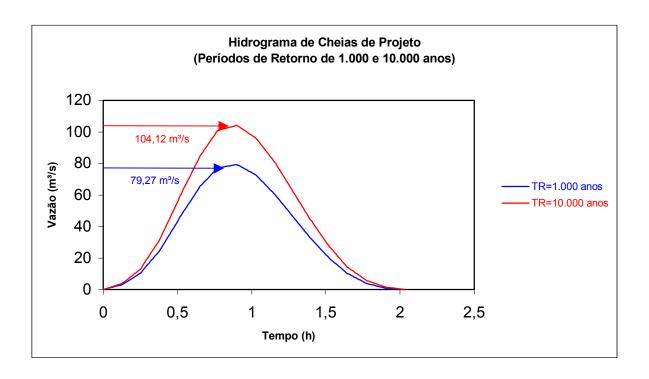


Figura 6.3 - Hidrogramas das cheias de projeto, para os tempos de retorno de 1.000 e 10.000 anos.

7 - ESTUDOS GEOTÉCNICOS

7 - ESTUDOS GEOTÉCNICOS

7.1 - CARACTERÍSTICAS GEOTÉCNICAS DOS MATERIAIS DE EMPRÉSTIMO

7.1.1 - Solos

Foram localizadas duas áreas de empréstimo para fornecimento de solo impermeável.

A jazida no. 1 dista 800m ao eixo da barragem e foi investigada através de 9 furos de sondagem a trado. A jazida no. 2 dista 1900m e foi investigada também através de 9 furos a trado. Os furos de sondagem foram rasos com profundidade média de 1,20 m.

O material encontrado é constituído por areia silto argilosa.

Foram realizados 8 ensaios de caracterização (granulometria por peneiramento e Limites de Atterberg) e 8 ensaios de compactação.

Os ensaios mostraram que a fração granulométrica predominante é constituída por areia (39 a 59%), seguida da fração silto-argilosa (36 a 59%), complementada pela fração pedregulho (0 a 8%).

Os ensaios de Limite de Liquidez e Limite de Plasticidade mostraram que o material localiza-se em torno da linha A, ora abaixo ora acima desta sendo portanto classificado como ML ou CL.

Os ensaios de compactação mostraram umidade ótima variando de 13 a 13,5% e densidade seca máxima variando de 1,790 a 1,890 kg/m3.

Nos Desenhos n.º PT-07 e PT-08 podem ser vistos os resultados dos ensaios e a localização das áreas investigadas.

7.1.2 - Areia

Foram localizadas três jazidas de areia.

O areal no. 1 localiza-se próximo ao riacho dos Patos foi pesquisado por meio de dezessete sondagens com profundidade média de 0,70m, porém o volume é insuficiente para as necessidades da barragem.

O areal no. 2 localiza-se a 7,7 km e foi investigado porem não apresentou material adequado.

O areal no. 3 está situado a 23,0 km do eixo na cidade de Santana do Cariri, localidade de Brejo Grande, portanto muito distante do local da obra

Deve-se portanto prever a utilização de areia artificial para na construção da obra.

Nos Desenhos n.º PT-07 e PT-08 podem ser vistos os resultados dos ensaios e a localização das áreas investigadas.

7.1.3 - Pedreiras

A região que comporta o futuro reservatório é tipicamente rochosa, com ocorrências de arenito aflorante que poderão ser exploradas como pedreiras na própria bacia a ser inundada. Cuidado especial deverá ser tomado quanto à presença de sílica amorfa na rocha, potencialmente reativa com os álcalis do cimento na fabricação de concreto.

Portanto, recomenda-se um estudo mineralógico e de reatividade álcalis-agregado, caso o arenito venha a ser utilizado na fabricação do concreto.

Fora da área do reservatório foram localizadas duas pedreiras para a barragem.

A pedreira no.1 localiza-se a 150,0m a jusante do eixo sendo constituída de rocha de textura granítica.

A pedreira no.2 localiza-se a 400,0m do eixo sendo também constituída de rocha de textura granítica.

7.2 - FUNDAÇÃO DA BARRAGEM/VERTEDOURO

O maciço de concreto da barragem deverá ser assentado sobre a superfície de rocha no seu estado são. Todas as ocorrências de solos, matacões, blocos soltos e rocha alterada e/ou fraturada deverão ser removidas, de forma que o concreto fique em contato direto com a rocha sã.

No caso de ocorrerem faixas de rocha alterada ou muito fraturada no topo do maciço rochoso, que possam ser removidas com picareta e rompedor, essas faixas devem ser escavadas até à total remoção, ou, no mínimo, até uma profundidade igual à largura, preenchendo-se as mesmas com concreto de resistência 30 MPa.

Para o tratamento profundo da fundação, deverão ser realizados injeções exploratórias verticais de calda de cimento ao longo do eixo da barragem, em toda a sua extensão, até à profundidade de 1,5 vezes a altura da barragem no local dos furos. Os furos deverão ter diâmetro de 4" e espaçamento de 8 metros, sendo injetados com calda de cimento sob pressão com fator água/cimento 0,5. As pressões de injeção em cada furo deverão ser calculadas de forma a não ultrapassar o limite de 75 % da pressão equivalente provocada pelo peso de rocha, evitando-se, assim, o macaqueamento do maciço rochoso.

Caso as perdas específicas de calda de cimento nos furos ultrapassem 50 kg de cimento por metro perfurado, o traço deverá ser aumentado progressivamente, até se controlar a absorção, e deverão ser realizados furos de injeção a cada 4 metros e, se necessário, a cada 2 metros, utilizando-se o mesmo critério.

O Desenho n.º PT-02 mostra o perfil geológico-geotécnico pelo eixo da barragem/vertedouro.

8 - ESTUDOS HIDRÁULICOS

8 - ESTUDOS HIDRÁULICOS

8.1 - VAZÃO PELO VERTEDOURO

O vertedouro adotado é do tipo livre, com perfil da soleira vertente tipo Creager. Em função das condições de arranjo e dos estudos de amortecimento de cheias no reservatório, estabeleceu-se o comprimento da crista igual a 20 metros.

A vazão pelo vertedouro é dada pela seguinte expressão:

$$O = C.L.H^{3/2}$$

Onde:

Q é a vazão pelo vertedouro, em m³/s;

 ${\cal C}$ é o coeficiente de vazão, cujo valor adotado é 2,0;

L é o comprimento da crista do vertedouro, em m,

H é a carga hidráulica sobre a crista do vertedouro, em m.

O amortecimento das cheias de 1.000 e 10.000 anos foi efetivado, através da utilização da curva cota x volume apresentada no tabela 10.1 e da metodologia de Puls, que é dada pela equação:

$$V_{i+1} + \frac{1}{2}(QE_{i+1})xDT = (QE_i)xDT + \frac{1}{2}(QE_i)xDT + \frac{1}{2}(QA_i + QA_{i+1})xDT$$

Onde:

 ${\it V}\,$ volume acumulado no açude, em metros cúbicos;

QA vazão afluente ao açude, em metros cúbicos por segundo;

QE vazão efluente ao açude, em metros cúbicos por segundo;

DT intervalo de tempo utilizado.

TABELA 8.1 - Valores de cota versus volume do Açude Patos.

COTA (m)	ACUMULADO (HM³)
420	0,000000
421	0,000130
422	0,000254
423	0,000500
424	0,000652
425	0,000908
426	0,005396
427	0,007852
428	0,008638
429	0,008718
430	0,009511
431	0,012753
432	0,020382
433	0,034442
434	0,056995
435	0,090060
436	0,135561
437	0,195297
438	0,270928
439	0,363975
440	0,475840
441	0,607840
442	0,761266
443	0,937444
444	1,137828
445	1,364102
446	1,618299
447	1,902942
448	2,221192
449	2,577028
450	2,975426
451	3,422571
452	3,926077
453	4,495224
454	5,141217
455	5,877456
456	6,719827
457	7,687009
458	8,800798
459	10,086445
460	11,573015
	,

Considerando o volume do Açude Patos em sua cota de sangria de 448 metros, com largura do sangradouro de 50 metros, bem como a utilização da metodologia de Puls, obtiveram-se as cheias efluente para os tempos de retorno de 1.000 e 10.000 anos, respectivamente. Nas figuras 8.1 e 8.2 são apresentadas as cheias afluentes e efluentes para os tempos de retorno de 1.000 e 10.000 anos.

Na tabela 8.2 são apresentadas as vazões de pico afluentes e efluentes e respectivas lâminas efluentes, para os tempos de retorno de 1.000 anos e 10.000 anos.

Tabela 8.2 - Vazões de pico afluentes e efluentes

Tempo de Retorno de 1000 Anos		Tempo de Retorno de 10.000 Anos			
Q _{pico afluente} (m³/s)	Q _{pico efluente} (m³/s)	Lâmina efluente (m)	Q _{pico afluente} (m³/s)	Q _{pico efluente} (m³/s)	Lâmina efluente (m)
79,27	21,14	0,65	104,12	27,87	0,79

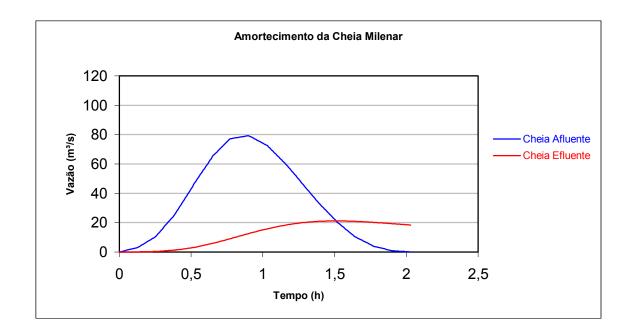


FIGURA 8.1 - Amortecimento da cheia milenar para cotas do vertedouro do Açude Patos

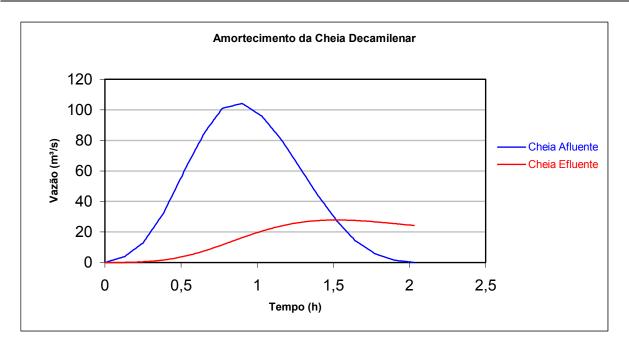


FIGURA 8.2 - Amortecimento da cheia decamilenar para cotas do vertedouro do Açude Patos

8.2 - BORDA LIVRE

A borda livre ou folga da barragem é a diferença de cota entre o coroamento e o nível d'água máximo para a cheia de projeto, considerada a cheia milenar.

Para o cálculo da borda livre foi utilizada a metodologia a seguir apresentada.

a) Cálculo do Fetch

O fetch é o comprimento efetivo máximo da área de influência da superfície do reservatório, sobre o qual a ação do vento provocará a formação de ondas.

O cálculo do fetch está apresentado no Desenho n.º PT-06, tendo sido obtido o valor de 0,27km.

b) Cálculo da Altura da Onda

A altura da onda formada pela ação do vento sobre o reservatório é dada pela expressão:

$$h = 0.75 + 0.35(F)^{1/2} - 0.26(F)^{1/4}$$
 para $F < 18Km$

sendo:

h altura da onda (m)

F comprimento máximo da área de influência (km)

Portanto, vem:

$$h = 0.75 + 0.34(0.27)^{1/2} - 0.26(0.27)^{1/4}$$

$$h = 0.74m$$

c) Cálculo da Velocidade da Onda

A velocidade da onda é pela expressão:

$$v = 1.5 + 2.h$$

sendo:

v velocidade da onda (m/s)

h altura da onda (m)

$$v = 1.5 + 2.0.74$$

$$v = 2.98m/s$$

d) Cálculo da Borda Livre

A borda livre (f) é dada pela expresão:

$$f = 0.75h + \frac{\left(v^2\right)}{2g}$$

sendo:

f altura da borda livre (m)

h altura da onda (m)

v velocidade da onda (m/s)

$$f + 0.75.0,74 + \frac{(2.98^2)}{2g}$$

$$f = 1.01m$$

8.3 - COTA DA BARRAGEM

A cota da barragem será definida de modo a atender aos dois seguintes critérios:

Nível d'água para a cheia milenar mais a borda livre calculada em função do fetch; e

Nível d'água para a cheia decamilenar mais folga de 0.60m.

Para o primeiro critério, vem:

$$C = H + f + s$$

sendo:

C cota da vista da barragem (m)

H craga hidráulica sobre o vertedouro para a cheia milenar (m)

f borda livre

s cota da crista da soleira do vertedouro (m)

Então, vem:

$$c = 0.65 + 1.01 + 448.00$$

$$c = 449,66m$$

- Para o segundo critério, vem:

$$C = H + f + s$$

sendo:

C cota da crista da barragem (m)

H carga hidráulica sobre o vertedouro para a cheia decamilenar

f borda livre de 0,60m

s cota da crista da soleira do vertedouro (m)

Então, vem:

$$C = 0.79 + 0.60 + 448.00$$

$$C = 449,392m$$

Portanto, a cota da crista da barragem foi estabelecida na el. 449,70 m.

9 - DESCRIÇÃO DO ARRANJO GERAL DAS OBRAS

9 - DESCRIÇÃO DO ARRANJO GERAL DAS OBRAS

A topografia no eixo escolhido para o barramento se apresenta na forma de um vale bastante encaixado, em forma de "V", com encostas bastante íngremes. Como as condições geológicogeotécnicas de fundação são favoráveis à implantação de um barramento de concreto, adotou-se um arranjo em que o vertedouro estará inserido na própria barragem.

Dado o caráter não perene do riacho Patos, no presente estudo não foram contempladas obras de desvio, uma vez que a barragem deverá ser construída no período de estiagem . Entretanto, ressalta-se que, quando da execução das obras, o empreiteiro deverá ter feito um planejamento da eventual colocação de dispositivos que permitam a limpeza e tratamento das fundações e a construção do próprio maciço da barragem, caso ocorram pequenas vazões.

À direita do vertedouro, no maciço da barragem está prevista a implantação de uma estrutura para tomada d'água, a partir da qual será feita a adução da vazão para o abastecimento.

O arranjo geral das obras pode ser visto no Desenho n.º PT-03.

10 - BARRAGEM

10 - BARRAGEM

A barragem será constituída por um maciço de concreto C.C.R., com crista na cota 449,70 m, comprimento de 70 m, e altura máxima de cerca de 21 m.

Em termos de fundação, a barragem será apoiada em arenito, que se apresenta praticamente aflorante em todo o leito.

A barragem terá o paramento de montante vertical, e o de jusante na inclinação 0,8H : 1,0V., em forma de degraus, resultante do próprio processo construtivo da maciço em C.C.R..

No paramento de montante será colocada uma camada de concreto convencional para impermeabilizar o maciço, da mesma forma que a parte superior da barragem também será executada em concreto convencional devido à largura pequena para os equipamentos de compactação.

A implantação, a seção típica e o perfil longitudinal pelo eixo da barragem/vertedouro podem ser vistos nos Desenhos n.º PT-03 e PT-04.

11 - VERTEDOURO

11 - VERTEDOURO

O vertedouro, incorporado à barragem, será implantado aproximadamente centrado em relação à calha do rio, com condições de fundação apropriadas para receber uma estrutura de concreto.

O vertedouro terá soleira livre com crista na cota 448,00 m e comprimento de 20 m. O perfil vertente será do tipo Creager, com coeficiente de descarga igual a 2,0.

A estrutura, em C.C.R., estará apoiada em rocha, com altura máxima de cerca de 19 m. O paramento a jusante da estrutura, que terá a forma de degraus já resultante do processo construtivo, será revestido com concreto convencional para maior resistência à ação do fluxo. O paramento em forma de degraus irá propiciar grande parte da dissipação de energia do fluxo.

Para o dimensionamento do vertedouro, fez-se o estudo de laminação através da utilização das cheias milenar e decamilenar, conforme descrito no item 10, cujos resultados estão apresentados na Tabela 11.1 a seguir.

Tabela 11.1 - Carga Hidráulica sobre o Vertedouro

Cheia	Vazão de pico afluente (m³/s)	Vazão de pico efluente (m³/s)	Carga Hidráulica (m)
Milenar	79,27	21,14	0,65
Decamilenar	104,12	27,87	0,79

A implantação, a seção típica e o perfil longitudinal pelo eixo da barragem/vertedouro podem ser vistos nos Desenhos n.º PT-03 e PT-04.

12 - TOMADA D'ÁGUA

12 - TOMADA D'ÁGUA

A tomada d'água para a adutora será implantada na barragem, à direita do vertedouro. A vazão a ser aduzida é de 0,022 m³/s considerando-se a garantia de 90%.

A tomada d'água estará incorporada na própria estrutura da barragem, sendo dotada de grade removível e comporta plana tipo adufa com dimensões 0,20 x 0,20m.

Na ranhura da grade poderá ser colocada uma comporta ensecadeira, no caso da necessidade de executar-se manutenção na adufa.

A partir da adufa quadrada, será feita uma transição de seção para tubo circular de diâmetro 0,20 m. Este tubo atravessa a fundação da barragem transversalmente, e logo a jusante do pé da barragem prevê-se a instalação de um registro no interior de uma caixa.

A cota do eixo da tomada d'água está prevista na el. 436,00 m, de modo a deixar um pequeno volume no fundo do reservatório cuja cota é aproximadamente 429,00m,, para acúmulo de sedimentos.

A posição da tomada d'água e a sua seção típica podem ser vistos nos Desenhos n.º PT-03 e PT-04.

13 - ADUTORA

13 - ADUTORA

13.1 - JUSTIFICATIVA

A população da localidade a ser beneficiada pela adutora, não dispõe de água para consumo humano em quantidade e qualidade adequadas. O abastecimento da referida comunidade é feito a partir de fontes pouco seguras. Trata-se de quatro poços com água de péssima qualidade, que na estação seca compromete o abastecimento da referida população.

Para atender às demandas locais, é necessário que se façam severos racionamentos e ainda se complemente o fornecimento de água para o abastecimento humano com carros-pipa.

Esse quadro tem agravado o empobrecimento das pessoas daquelas localidades e impedido o desenvolvimento econômico sustentável.

13.2 - OBJETIVO

O objetivo da adutora planejada é garantir o fornecimento de água à localidade por ela alcançada em termos de quantidade e qualidade. O fornecimento da água bruta até a estação de tratamento a ser inaugurada é o objeto deste Anteprojeto.

13.3 - SITUAÇÃO ATUAL DO ABASTECIMENTO

13.3.1 - População alvo

A população a ser beneficiada pelo projeto é a população da sede municipal de Nova Olinda, que conta com 3.200 unidades domiciliares, além de comunidades difusas situadas ao longo da adutora. Tratam-se de pessoas, em sua grande maioria, de baixa renda. Suas principais fontes de renda são as aposentadorias rurais e a agricultura de subsistência. Em menor proporção, ocupam-se com empregos da prefeitura, pecuária e pequeno comércio.

A localidade de Nova Olinda conta com sistema de abastecimento de água de acordo com arranjo mostrado na figura seguinte.

Os componentes do sistema são:

FIGURA - ARRANJO DO SISTEMA DE ABASTECIMENTO DE ÁGUA

Captação:Quatro conjuntos eletrobombas submersas (uma em cada poço).

Adutora de água bruta (recalque): .PT-3: Extensão=1,0 km, DN=150mm;

PT-4: Extensão=0,2km, DN=160mm;

PT-5: Extensão=0,1km, DN=100mm; 3,0 km, DN=160mm; 0,5 km,

DN=100 mm;

PT-6: Extensão=0,1km, DN=100mm; 3,0 km, DN=160mm; 0,5 km,

DN=100 mm.

Estação elevatória (captação, recalque

12,0cv (PT-5 e PT-6) e 15,00 cv (PT-3 e PT-4); Vazões: 15,552 m³/h (PT-3), 20,124 m³/h (PT-4), 17,00 m³/h (PT-5) e 13,00 m³/h (PT-6).

Nenhum conjunto possui reserva.

Estação de Tratamento

de Água (ETA): A única estação de tratamento de água existente está em fase de

conclusão. No momento não existe nenhum tipo de tratamento.

da cidade de Nova Olinda (Bairro Cruzeiro).

(91%) de ligações domiciliares ativas; 200 (9%) de ligações domiciliares inativas, perfazendo um total de 2.150 (100%), sendo que cerca de 1.500

(70%) são dotadas de hidrômetros.

13.4 - ESTUDO DE ALTERNATIVAS

O estudo de alternativa baseou-se em reconhecimento de campo e avaliação de traçados em cartas da SUDENE na escala 1:100.000

A região não dispõe de reservas subterrâneas que permitam a sua utilização para o abastecimento humano local. Os poços da área tem baixa vazão e sua água é muito salina inadequada para o consumo humano.

O único manancial superficial disponível com condições de fornecer água com níveis de garantia de abastecimento adequados é o Açude Patos.

Foram avaliadas duas alternativas de atendimento para a comunidade de acordo com o desenho seguinte.

DESENHO DAS ALTERNATIVAS (carta da Sudene, tal como está + uma outra alternativa)

A alternativa adotada foi a alternativa 01 pelos seguintes motivos:

- a) A topografia no seu traçado é mais favorável, possibilitando um menor número de dispositivos de controle e segurança da tubulação;
- b) O traçado acompanha, sempre que possível, estradas existentes o que facilita o acesso aos locais da adução, e as operação e manutenção dos sistemas;
- c) Os desníveis geométricos são menores, reduzindo os portes dos equipamentos de bombeamento e os custos operacionais;
- d) Beneficia um maior número de comunidades e de pessoas;
- e) Tem menor extensão;
- f) Em conseqüência dos demais motivos a alternativa selecionada tem menor custo somados os valores de implantação, manutenção e operação.

13.5 - ESTUDO POPULACIONAL

Para estimar-se a população a ser beneficiada por cada adutora partiu-se dos dados dos censos do IBGE de 1991 e 2000, e da contagem de 1996. Nas pequenas localidades em que o IBGE não disponibilizou dados, avaliou-se a população a partir da contagem das residências considerando-se 4,5 pessoas por residência. Incluiu-se ainda, uma população difusa ao longo da tubulação adutora.

Para efeito de projeção populacional adotou-se os dados do ano de 2000.

O horizonte de projeto, seguindo as recomendações dos Manuais Operativos do PROÁGUA, foi de 30 anos.

A projeção populacional foi realizada pelo método geométrico adotando-se como taxa máxima de crescimento geométrico o valor de 2,5% ao ano, e mínima de 1,5"% ao ano.

No cálculo, utilizou-se a formulação:

$$P_n = P_{20000} \times (1 + t_g)^n$$
, onde:

 P_n = população no ano n

P₂₀₀₀ = população em 2000, de acordo com o Censo do IBGE ou de pesquisa de campo.

t_a = taxa de crescimento geométrico

n = número de anos.

Em algumas localidades, observou-se, de acordo com o IBGE, taxas elevadas acima de 4% ao ano. Tal fato, que deverá ser passageiro, deve-se à transferência da população rural para os núcleos urbanos. Nos próximos 30 anos, com certeza, estas taxas deverão cair para valores de até 2,5% ao ano.

13.6 - PARÂMETROS DE PROJETO

Os parâmetros de projeto foram os indicados no Manual Operativo do PROÁGUA/SEMI-ÁRIDO, que vem sendo utilizados em todos os projetos da Secretaria dos Recursos Hídricos do Estado do Ceará - SRH/CE.

Ano inicial do plano	. 2.002
Horizonte de projeto	. 2.032
Índice de abastecimento(IAB)	. 100% da pop. urbana
Consumo per capita bruto (C)	. 150 l/hab. x dia
Coeficiente de majoração p/ o dia de maior consumo (K1)	. 1,20
Tempo de operação diário	. 24 hs

13.7 - VAZÕES DE PROJETO

Vazão média

$$q = \frac{PxCxIAB}{86.400}$$

onde: P = população no horizonte de projeto (2032)

C = consumo per capita, incluindo perdas

IAB = índice de abastecimento

Vazão requerida no dia de maior consumo

$$q_1 = q \times K_1$$

13.8 - CONCEPÇÃO GERAL DO SISTEMA PROPOSTO

13.8.1 - Captação

A captação da água para o sistema adutor será na bacia hidráulica do reservatório.

Para evitar trecho de tubulação flutuante mais extenso poderão ser implantados um canal de aproximação a ser escavado na bacia do reservatório.

13.8.2 - Estação Elevatória de Água Bruta

No anteprojeto considerou-se uma estação elevatória única na captação.

13.8.3 - Adutora de Água Bruta

Esta tubulação poderá ser executada utilizando qualquer material que atenda as condições de assentamento, rugosidade, e suporte as pressões de projeto.

Seus principais dados foram estimados assim:

- Extensão: obtida das cartas da SUDENE na escala: 1/100.000 e/ou do INCRA na escala 1/20.000;
- Diâmetro: estimado pela fórmula de BRESSE

$$D = 1.2 \cdot X^{1/4} \sqrt{Q}$$

onde:
$$X = \frac{n^{\circ} \text{ de horas operação por dia}}{24}$$

- Perdas de Carga: calculadas pela fórmula de HAZEN-WILLIAMS:

$$j = 10,643 \ Q^{1,852} \times C^{-1,852} \times D^{-4,87}$$

Onde: Q: vazão (m³/s)

D: diâmetro interno do tubo (m)

j: perda de carga unitária (m/m)

C: coeficiente que depende da natureza (material e estado) das paredes dos tubos.

- Pressão de serviço: avaliada a partir do perfil piezométrico estimado para a linha de adução. Nesse perfil considerou-se uma pressão disponível mínima de 10 m.c.a., para garantir a chegada até reservatórios de distribuição e evitar formação de bolhas de ar.

13.8.4 - Estações de Bombeamento de Água Tratada

Para cada adutora previu-se a nível de Anteprojeto, uma estação de bombeamento única localizada na saída da ETA. Quando do projeto básico, poderá se utilizar mais estações de modo a minimizar os custos de implantação e operacionais do projeto, bem como melhorar sua funcionalidade.

Na estimativa destas estações, considerou-se o seguinte:

Tipo de conjunto - bomba centrífuga de eixo horizontal com motor elétrico

- Número de conjuntos motobombas 1 operando + 1 reserva
- Altura manométrica obtida a partir do perfil piezométrico pela soma do desnível geométrico e das perdas de carga.
- Potência por conjunto elevatório calculado por:

$$P = \frac{\gamma QH}{75\eta},$$

onde: P = potência (em cv)

 γ = peso específico da água (em kg/m³)

H = altura manométrica (em m)

 η = rendimento adotado 0,65

13.8.5 - Reservatórios de Distribuição

Foram previstos reservatórios complementares para cada localidade de modo a garantir um volume de reservação mínimo igual a 1/3 do consumo máximo diário.

13.9 - SISTEMA PROPOSTO

O sistema proposto está ilustrado em planta e perfil na figura 13.1.

No seu dimensionamento considerou-se um índice de atendimento de 100 %, e um horizonte de projeto de 30 anos sendo o ano zero 2002.

As perdas de água no sistema são estimadas a um máximo de 25 %, já incluídas no consumo per capita de 150 l/s.

Por se tratar de um sistema de pequeno porte, admitiu-se que o mesmo fosse implantado em uma única etapa dimensionada para as necessidades do projeto no ano de 2032.

Em virtude da fragilidade do sistema atual, não deduziu-se de sua capacidade, o potencial do sistema proposto, que foi planejado para as necessidades globais em 2032.

No quadro 13.1 mostra-se ano a ano os dados operacionais do sistema, em termos de adução de água e armazenamento.

FIGURA 13.1 - PLANTA BAIXA (SUDENE) E PERFIL

- PLANTA BAIXA
- PERFIL

QUADRO 13.1 - DADOS OPERACIONAIS DO SISTEMA (ADUTORA DE NOVA OLINDA)

- QUADRO
- FIGURA

13.9.1 - Fonte Hídrica

A fonte hídrica para o abastecimento para a sede municipal de Nova Olinda é o açude Patos. Este reservatório barra o rio Cariús, na bacia hidrográfica do rio Cariús. O reservatório tem uma capacidade de armazenamento de 2,221 hm³ e uma descarga regularizada com 90 % de garantia de 22,42 l/s. Tal descarga é inferior a vazão de dimensionamento da adutora que é de 30,61 l/s.

13.9.2 - Captação

A captação da água bruta se fará do lago do reservatório do açude por intermédio de uma plataforma flutuante circular dimensionada para conter um conjunto elevatório. Devendo a mesma ter as seguintes dimensões:

Diâmetro - 1,50 m

Altura - 1,00 m

Vazão máxima diária - 2.645 m3/dia.

A tubulação para travessia do lago será flutuante de polietileno de alta densidade com as seguintes características:

Diâmetro – 200 mm

Extensão aproximada - 100 m

Pressão de serviço - 60 mca

13.9.3 - Estação elevatória de água bruta

Esta estação deverá bombear a água do lago do reservatório até o reservatório apoiado a ser construido na margem do açude acoplado á ETA.

Será constituída de conjuntos motobombas elétricos com bombas centrifugas de eixo horizontal a serem instaladas na plataforma flutuante. Suas principais características são:

Número de conjuntos – 2, sendo um em funcionamento e 1 para reserva.

Vazão por conjunto - 110,196 m3/h.

Altura manométrica estimada - 30 mca

Potência de cada conjunto - 20,41 cv

13.9.4 - Estação de Tratamento de Água

A nível de viabilidade previu-se uma Estação de Tratamento compacta incluindo no mínimo, câmara de carga, filtros, desinfecção e reservatório de água tratada. Seus principais dados são:

Vazão - 115,0 m3/h

Altura da câmara de carga - 7,0 m

Diâmetro da câmara de carga – 1,0 m

Diâmetro do filtro ascendente – 2,0 m

Altura total do filtro ascendente – 3,50 m

Capacidade do reservatório apoiado de água tratada – 20 m3

13.9.5 - Estação de bombeamento de água tratada

A água do reservatório de água tratada deverá ser bombeada até os reservatórios de distribuição das localidades a serem beneficiadas por uma estação de bombeamento com bombas centrífugas de eixo horizontal acionadas com motores elétricos com as seguintes características:

Número de conjuntos eletrobombas: 02, sendo um em funcionamento e um para reserva;

Vazão por conjunto - 110,196 m3/h.

Altura manométrica total – 57,73 mca

Potência por conjunto - 39,88 cv

13.9.6 - Adutora

A tubulação adutora deverá chegar até o reservatório de distribuição na localidade de Nova Olinda tendo os seguintes elementos:

Extensão - 6.200 m

Diâmetro da tubulação - 200 mm

Pressão de serviço - 100 m.c.a

Desnível geométrico – 28,50 m

A seguir, apresentamos o perfil topográfico e piezométrico da adutora de Nova Olinda.

13.9.7 - Reservação

Foi previsto um reservatório de distribuição elevado a ser implantado em ponto estratégico da sede municipal de Nova Olinda, dimensionado para 1/3 do consumo máximo diário no ano de 2032. A sua capacidade de armazenamento é de 882 m3.

14 - CRONOGRAMA DE OBRAS

14 - CRONOGRAMA DE OBRAS

O principal condicionante na definição do esquema para execução das obras diz respeito ao período e construção da barragem, que deverá estar inserido no período de estiagem, entre os meses de julho e janeiro.

Para os volumes totais dos serviços principais previstos, estima-se o prazo total de 9 meses para execução das obras, conforme cronograma apresentado a seguir:

CRONOGRAMA

(3 páginas)

15 - ORÇAMENTO PARA IMPLANTAÇÃO DAS OBRAS

15 - ORÇAMENTO PARA IMPLANTAÇÃO DAS OBRAS

Com base nos quantitativos de obras, serviços e equipamentos obtidos a partir dos desenhos de concepção das estruturas foi elaborado o orçamento para implantação das obras.

Os preços unitários utilizados são os usualmente empregados em obras deste tipo, tendo sido utilizados preços praticados no Estado do Ceará, e constantes do banco de dados da ANB e da HIDROSTUDIO.

Os preços estão referidos à data base de setembro de 2002, com a taxa de câmbio igual a US\$1,00 = R\$ 3,09.

A seguir apresenta-se a planilha de orçamento, onde pode-se ver que o valor estimado para a implantação das obras é de R\$ 2.064.008,85.

PLANILHAS DO ORÇAMENTO

[Açude + Adutora(s)]

= 4 páginas

16 - ANEXO (DESENHOS)

RELAÇÃO DE DESENHOS

DESENHO_PT-01 - RESERVATORIO.dwg

DESENHO_PT-02 - PERFIL-GEOLOGICO.dwg

DESENHO_PT-03 - IMPLANTACAO.dwg

DESENHO_PT-04 - SECOES-PERFIL.dwg

DESENHO_PT-05 - CURVA-COTA-VOL.dwg

DESENHO_PT-06 - FETCH.dwg

DESENHO_PT-07 - ENSAIOS.dwg

DESENHO_PT-08 - ENSAIOS-LOC.dwg

II - VIABILIDADE FINANCEIRA E ECONÔMICA

II - VIABILIDADE FINANCEIRA E ECONÔMICA

Atendendo ao disposto nos Termos do Contrato N.°001/PROGERIRH-PILOTO/SRH/2002, firmado com a Secretaria de Recursos Hídricos do Estado do Ceará, o Consórcio ANB/HIDROSTUDIO, com base nas definições contidas no Edital, vem desenvolvendo os Estudos de Viabilidade Técnica, Ambiental, Econômica e Financeira da Barragem Patos, localizada no município de Nova Olinda, no Estado do Ceará.

O relatório descreve as etapas e metodologias empregadas com objetivo de investigar a sustentabilidade financeira e econômica dos investimentos necessários a implantação e operação da barragem e do sistema adutor para o abastecimento da localidade de Nova Olinda, levando em conta a garantia de suprimento e os padrões de qualidade estabelecidos na legislação vigente.

1 - VIABILIDADE FINANCEIRA

1 - VIABILIDADE FINANCEIRA

1.1 - CONSIDERAÇÕES INICIAIS

A metodologia de avaliação financeira de projetos de Obras Hidráulicas tem por objetivo investigar a sustentabilidade financeira dos investimentos, tendo por base a valoração dos custos e benefícios a preços de mercado, os quais incluem impostos e subsídios.

A avaliação financeira objetiva, portanto, avaliar se os recursos serão aplicados de forma eficaz e se os ganhos privados e públicos são suficientes para remunerarem os investimentos propostos. Vista pela ótica da alocação dos recursos a avaliação financeira busca mensurar o impacto direto provocado pelo aumento da oferta d'água no fluxo de caixa atual dos financiadores do projeto através da ótica incremental. Assim, como o objetivo é de mensurar o retorno aos investimentos do projeto, será formado um fluxo de caixa incremental, cuja elaboração exigirá a quantificação de várias variáveis para as situações "sem projeto" e "com projeto".

Todos os valores dos custos e benefícios são expressos em reais de fevereiro de 2003.

1.2 - PROJEÇÃO DA POPULAÇÃO E DEMANDA ATUAL E FUTURA

O Quadro 1.1 apresenta a projeção da população e os Quadros 1.2 e 1.3 destacam os valores projetados das demandas, para as situações sem e com projeto para a população alvo da barragem Patos.

1.3 - PROJEÇÕES DE OFERTA

A oferta para a situação com projeto foi calculada considerando-se a demanda com projeto, adicionandose as perdas do sistema.

Para efeito de projeto, foi considerado o nível de perdas de 25%, que é o nível recomendado pelo PROÁGUA para as empresas estaduais de saneamento.

Para a situação sem projeto, a oferta foi calculada considerando-se as populações ligadas e não ligadas à rede. Para a população ligada, a oferta é igual à demanda adicionando-se as perdas físicas de 25%, mantidas constante durante todo o horizonte de análise. Para os não ligados, considerou-se a oferta igual à demanda.

O Quadro 1.4 apresenta os valores de oferta para as situações sem e com projeto.

1.4 - TARIFA MÉDIA

A tarifa para a situação com projeto foi calculada levando-se em conta a estrutura tarifária atual, o consumo per capita adotado no projeto e a estimativa de 4,5 habitantes por ligação. A tarifa média estimada foi de R\$ 0,75/m3. (Quadro 1.5).

Para a situação sem projeto o cálculo da tarifa média foi calculado dividindo-se a arrecadação total pelo consumo total (consumo medido mais consumo estimado), conforme orientação do PROÁGUA. O valor estimado foi de R\$ 0,61/m3.

QUADROS 1.1, 1.2, 1.3, 1.4, 1.5

1.5 - RECEITAS

As receitas da situação com projeto foram estimadas multiplicando-se os valores das demandas anuais de água pela tarifa média, descontando ainda as perdas financeiras resultantes das inadimplências, correspondente ao percentual de 3% ao ano, conforme sugerido pelo PROÁGUA (Quadro 1.6).

Para a situação sem projeto o cálculo das receitas é obtido multiplicando a demanda anual sem projeto da população ligada à rede pela tarifa média atualmente praticada, que é de R\$ 0,59/m3, sendo descontado o percentual de 22% referente às perdas financeiras atuais, mantendo-se constante para todo o horizonte de análise do projeto (Quadro 1.6).

1.6 - CUSTOS

a) Investimentos

Os valores dos investimentos previstos para o projeto (Barragem, Serviços Preliminares, Captação, Adução, Reservação, ETA, Estação Elevatória, Desapropriação, Reassentamento etc.) e desagregados em tubos e conexões, obras civis, equipamentos hidromecânicos, equipamentos elétricos, serviços, etc., estão apresentados, a preços de mercado, no Quadro 1.7.

b) Despesas Anuais com Operação, Administração e Manutenção.

Os custos operacionais para a situação sem projeto foram estabelecidos com base nos custos observados nos últimos 12 meses de operação do sistema atual. De acordo com as informações fornecidas pela companhia operadora local do sistema, discriminados nos Quadros 1.8, 1.9 e 1.10, esses custos, distribuídos em custos fixos e variáveis, somam o montante de R\$ 74.734.

Os custos operacionais para a situação com projeto são discriminados nos Quadro 1.11 e 1.12. Nos cálculos consideraram-se os custos de manutenção dos investimentos, energia, pessoal e produtos químicos. Esses custos foram separados em custos fixos, os quais ocorrem mesmo quando o sistema está parado, isto é, independem do volume de produção anual, e os custos variáveis, que são proporcionais aos níveis de produção. O Anexo 01 apresenta uma descrição detalhada de obtenção dos dados de custos de operação e manutenção.

1.7 - FLUXOS DE RECEITAS E CUSTOS E RESULTADOS DA AVALIAÇÃO FINANCEIRA

O Quadro 1.13 apresenta os fluxos financeiros do projeto, constando dos valores relativos às receitas, aos investimentos, aos custos operacionais e aos benefícios líquidos incrementais.

O Quadro 1.13 resume ainda os resultados da avaliação financeira. A taxa interna financeira de retorno de 7,2% trata-se de um bom resultado para projetos com essas características, haja vista ter sido considerado apenas como benefício o suprimento de água doméstico e ter sido incluído nos investimentos os custos da barragem, da desapropriação e do reassentamento. O Quadro 1.13 demonstra ainda que deveria ser necessário cobrar uma tarifa média de apenas R\$ 1,03/m3 para que a TIR financeira fosse igual a 12%. Sem a cobrança deste nível tarifário, o volume de subsídio líquido é de R\$ 0,42/m3.

QUADROS 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12, 1.13

1.8 - CUSTO DA ÁGUA

O custo da água disponibilizada se define como sendo:

 CAD = Soma do Valor Presente dos Custos (Investimento. + Oper. e Manut.) / Soma do Valor Presente da Água Fornecida.

O Quadro 1.14 resume os dados de custo de investimento e de operação e manutenção, e os dados de volumes de água fornecida do projeto, para o período de 30 anos. A partir do valor presente destas variáveis, obtiveram-se as respectivas anualidades de custo de capital e O&M, as quais fornecem os seguintes valores: Custos de Capital + O&M = R\$ 0,79/m3 e Custos de O&M = R\$ 0,24/m3.

1.9 - IMPACTO FISCAL

O impacto fiscal do projeto foi calculado através da diferença entre a situação com projeto e a situação sem projeto dos fluxos financeiros de investimentos, custos de operação e manutenção e de receitas, considerando os seguintes percentuais médios de incidência de impostos:

- Operação e Manutenção: 30% sobre a folha de salários e gastos com manutenção;
- Energia elétrica: 17% referente ao ICMS;
- Produtos Químicos: sobre este item incidem dois tipos de tributos o IPI e o ICMS estimados, respectivamente, em 10% e 15%;
- Outras despesas: admitiu-se a alíquota média de 15%;
- Receitas: sobre as vendas foram considerados a incidência de tributos, tais como ICMS, imposto de renda, PIS e FINSOCIAL, cujo total foi estimado em 15%.

O Quadro 1.15 apresenta os impactos fiscais incrementais gerados pelo projeto que, em termos de valor presente, corresponde a um decréscimo na arrecadação na ordem de R\$ 424.224. Este valor pode ser considerado como conservador, pois se limita apenas aos gastos de investimentos e de O&M e receitas pela venda de água e, portanto, não considera o impacto fiscal adicional a ser gerado com o incremento das atividades econômicas proporcionadas pelo projeto nas localidades beneficiadas (efeitos "para traz" e "para frente"). Como conseqüência ainda dos benefícios indiretos pela implantação do projeto, o setor público reduzirá, naturalmente, suas despesas com obras e serviços de assistência social, principalmente para oferecer fontes alternativas de abastecimento humano e pela redução dos atendimentos médicos provocados pela melhoria da qualidade da água. Desta forma, pode-se concluir que o projeto é financeiramente viável, desde que sejam incluídos nos fluxos de benefícios líquidos, como consegüência do projeto, todos os impactos fiscais diretos e indiretos.

QUADROS 1.14, 1.15

2 - VIABILIDADE ECONÔMICA

2 - VIABILIDADE ECONÔMICA

2.1 - CONSIDERAÇÕES INICIAIS

A avaliação econômica objetiva averiguar se os recursos serão aplicados de forma eficaz e se os ganhos privados e públicos são suficientes para remunerarem os investimentos propostos. Assim, como o objetivo é mensurar o retorno dos investimentos do projeto, formou-se um fluxo de caixa incremental, cuja elaboração exigiu a quantificação de custos de investimentos e de operação, administração e manutenção, medidas ambientais e dos benefícios incrementais oriundos dos serviços de suprimento de água doméstica.

2.2 - CRITÉRIOS BÁSICOS UTILIZADOS

a) Conversão a Preços de Eficiência

Como se requerem valores a preços econômicos¹, devem-se utilizar fatores de conversão para transformar os custos a preços de mercado para preços sociais. Para isso, sugere-se utilizar os mesmos fatores de conversão já utilizados e recomendados pelo PROÁGUA, ou seja:

ITEM	FATORES DE CONVERSÃO (F.C.)
Mão de Obra Qualificada	0,81
Mão de Obra Não Qualificada	0,46
Materiais Nacionais e Importados	0,88
Equipamentos Nacionais e Importados	0,80
Produtos Químicos	0,83
Energia Elétrica	0,97
Fator de Conversão Padrão	0,94

b) Taxa de Desconto Social e Horizonte de Planejamento.

A taxa social de desconto que convencionalmente se emprega e recomendada pelo BIRD para este tipo de projeto para cálculo do valor presente dos custos e receitas é de 12% ao ano. O horizonte de planejamento é de 31 anos, sendo 01 (um) para implantação do projeto, e 30 anos de geração de benefícios (operação).

distinga diferenças metodológicas de cálculo desses preços, cabe aqui lembrar que, na prática, a conversão de um orçamento de um projeto a preços financeiros ou de mercado para preços sociais sempre se efetua empregando fatores de conversões, sejam específicos para cada insumo empregado no projeto, ou generalizados: mão-de-obra, insumos importados, energia elétrica, ou componentes nacionais etc.

Relatório Final (Patos) - VIABILIDADE Técnica-Econômica-Fin

Denomina-se preço econômico, sombra, social, ou de eficiência como aquele que ocorreria em uma economia em equilíbrio, em condições de concorrência perfeita e ausência de distorções de mercado - impostos discriminatórios, subsídios, externalidades etc. Embora o rigor técnico distinga diferences metodológicas de cálcula deses precos caba aqui lembrar que, na prática a conversõe de um projeto a

2.3 - CUSTOS E BENEFÍCIOS ECONÔMICOS ASSOCIADOS AO ABASTECIMENTO HUMANO

a) Introdução

Os benefícios sociais decorrentes da implantação de um projeto de abastecimento de água potável tornam o processo decisório de natureza social, pois, em geral, espera-se que esses projetos possam proporcionar os seguintes benefícios:

- redução das taxas de morbidade e mortalidade provocada por enfermidades de origem hídrica;
- melhorias dos hábitos e atitudes da população beneficiária, com respeito ao uso da água e disposição final;
- promoção do desenvolvimento econômico, social e intelectual das comunidades através de melhorias das condições sanitárias.

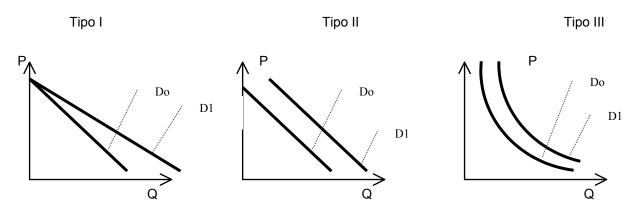
No entanto, em face ao reconhecido *problema econômico* de escassez de recursos frente às necessidades ilimitadas, a decisão sobre a implantação desses projetos exige a aplicação de critérios econômicos, tendo em vista os objetivos de alocação eficiente dos recursos, de crescimento econômico e de distribuição de renda.

É dentro desse contexto do problema econômico que se insere a avaliação econômica de projetos, com o intuito de demonstrar para a sociedade em quanto a implantação de um projeto aumenta o seu bemestar. Em um país em desenvolvimento, uma boa medida dessa variação de bem-estar coletivo é o incremento de riqueza gerado pelo projeto.

A mensuração dessa variação pode ser efetuada através de uma análise de custo-benefício (ACB). Uma técnica de estimar monetariamente os custos e benefícios decorrentes de um projeto sobre todos os agentes afetados, em uma mesma medida (reais, dólares, etc) e para diferentes momentos. Em outras palavras, o objetivo da ACB é formar um fluxo de caixa de custos e benefícios que atualizados por uma dada taxa social de desconto resultem em um valor presente líquido (VPL). Se o valor presente desse fluxo for positivo, deve-se aceitar o projeto, pois neste caso ele agregará riqueza à sociedade, mas se VPL for negativo, deve-se rejeitá-lo, mesmo que privadamente represente um bom negócio para os donos do projeto, pois nesta situação, o ganho proporcionado aos donos será, pelo menos, igual à perda sofrida pelos demais agentes econômicos afetados.

É nesse último ponto que aparece uma primeira diferença entre a avaliação financeira e econômica de projeto, aquela se preocupa apenas com os empreendedores ou financiadores, enquanto que esta última envolve todos os agentes econômicos: consumidores, produtores e governos.

b) Elasticidade-preço da Demanda


Estudos desenvolvidos pelo Banco do Nordeste em 1997 para estimação de funções de demanda de água no Nordeste calculam os custos econômicos (preço por m³) para cada um desses modos de obtenção de água na região.

Identificada à situação base deve-se em seguida proceder à demanda de água na situação com projeto. A diferença entre a situação com e sem o projeto definirá os benefícios do projeto pelo consumo adicional de água.

Para determinar a demanda com o projeto, deve-se valer de funções de demanda de água, estimadas para esse fim. As formas funcionais usualmente empregadas para ajustar as curvas de demanda de água em função do preço são as lineares e hiperbólicas. No caso do modelo SIMOP² a função linear se desdobra em dois outros tipos de curva, **tipo I** para as funções de demanda cujo deslocamento ao longo do tempo se processa sem alteração na magnitude da elasticidade, para um dado nível de preço (intercepto constante), e o **tipo II** cujo deslocamento da função se processa paralelamente ao longo do tempo (inclinação constante), porém para um mesmo nível de preço a elasticidade vai diminuindo em magnitude absoluta.

A função hiperbólica, denominado no SIMOP por **tipo III**, é a mais recomendada para o consumo humano, por representar um bem em que sempre há um nível mínimo de consumo, independente do preço cobrado.

Os gráficos I, II e III abaixo ilustram essas formas funcionais, inclusive os deslocamentos dessas curvas ao longo do tempo. Nos casos ilustrados, a curva Do representa a curva de demanda do ano zero do projeto, enquanto a curva D1 mostra a curva de demanda do ano um, cujo deslocamento ocorre tanto em função do crescimento do número de consumidores, como em função do crescimento da renda per capita dos consumidores, que por sua vez eleva os consumos per capita.

As equações que originam essas curvas são mostradas a seguir.

Relatório Final (Patos) - VIABILIDADE Técnica-Econômica-Fir

15

² O SIMOP é um modelo computacional desenvolvido pelo Banco Interamericano de Desenvolvimento - BID para simular custos e benefícios econômicos decorrentes de um projeto de expansão de sistemas de abastecimento de água. A metodologia e operação do modelo encontram-se no *Manual del Usuario* – Publicação Técnica No. 12-75, preparado por Terry A. Power.

Q = a + bP ⇒ função linear

Q = a P^e ⇒ função hiperbólica, que linearizando-a se torna : Ln Q = Ln A + e Ln P

Onde:

Q: é quantidade demandada em função do preço,

a: é constante da função,

P: o preço do m3 da água consumida e

e: a elasticidade preço-consumo

Salientando-se que no caso da função hiperbólica a elasticidade preço é obtida diretamente da função, que é o expoente da variável preço, enquanto que para a função linear o valor da elasticidade é dado pela seguinte fórmula.

$$e = (\Delta Q/\Delta P) \cdot (P/Q)$$

Onde:

 $(\Delta Q/\Delta P)$: corresponde à derivada da função de demanda com relação a preço,

(P/Q): razão preço quantidade, que pode ser calculado para um determinado ponto da equação ou para um intervalo de valores, que neste caso deve-se tomar o valor médio da série de preço e da quantidade.

Para o abastecimento humano, considerou-se a elasticidade de -0,55, de acordo com a função de demanda de água do Nordeste (Banco do Nordeste, 1997)³.

c) Custo Alternativo da Água

Os consumidores não conectados à rede pública de abastecimento de água suprem suas necessidades através de diversas fontes alternativas, tais como poços particulares, carros-pipa, buscam água em córregos, chafarizes, vizinhos e, não raro, compram água, entre outras.

Esses custos, em geral, são mais elevados, por unidade de volume, do que os cobrados pelos sistemas públicos de abastecimento. Além disso, os sistemas públicos oferecem água de melhor qualidade.

Conforme informações colhidas na localidade de Nova Olinda, as famílias não ligadas à rede pública de abastecimento da comunidade "buscam água". Para essa fonte alternativa de água, os custos, de acordo com o estudo desenvolvido pelo Banco do Nordeste⁴, é de R\$ 4,38/m³. Desta forma, o custo alternativo da água na comunidade em estudo foi considerado igual a R\$ 4,38/m³.

-

Banco do Nordeste/PBLM-Consultoria Empresarial – Agosto, 1997.

⁴ Banco do Nordeste/PBLM, op.cit.

d) Grupos de Usuários

Na avaliação econômica da adutora de Nova Olinda foram considerados dois grupos de beneficiários, ou seja:

GRUPO 1 – Grupo compreendido pelos atuais usuários da localidade de Nova Olinda.

GRUPO 2 – Grupo compreendido pelos novos usuários da localidade de Nova Olinda.

e) Custos Econômicos

Para transformar de valores financeiros a econômicos foi utilizado o Quadro 1.16, que permitiu desagregar os custos financeiros dos investimentos, enquanto o Quadro 1.16a apresenta os investimentos do projeto em valores econômicos.

Com base no Quadro 1.12 foram estimados os custos fixos e variáveis do projeto, a preços de eficiência, dados importantes para o modelo SIMOP, os quais se encontram destacados no Quadro 1.17.

f) Parâmetros Utilizados para o Modelo SIMOP, Fluxos dos Benefícios Líquidos Incrementais e Resultados da Avaliação Econômica

Horizonte do projeto: 30 anos;

- Taxa de desconto: 12%;

- Elasticidade de preço: -0,54731;

Tarifa média da água: R\$ 0,75/ m3;

Tipo de curva: Tipo III (Consumidores residenciais).

- Taxa de crescimento da demanda: Considerada a taxa de crescimento da população.

- Fator de conversão do consumo: 0,94;

Custos periódicos.

Os custos incrementais de operação e manutenção, a preços de eficiência, correspondem às despesas previstas no Quadro 1.17.

Custos não periódicos:

Considerados os investimentos do projeto previstos no Quadro 1.16a (a preços de eficiência).

Custos variáveis

Considerados os custos unitários de ligação ao sistema, ou seja, R\$ 0,073/m3, os quais foram estimados com base nos Quadros 1.12 e 1.17.

QUADRO 1.16(a) e 3.17

Com base nestas informações rodou-se o modelo SIMOP (Anexo II), encontrando-se um valor presente líquido positivo, a taxa de desconto de 12% ao ano, de R\$ 4.557.439 e uma taxa interna econômica de retorno de 39,98%, que é bem acima da taxa mínima (12%) exigida pelo BID. A TIR de 39,98%, muito embora já demonstre a ótima rentabilidade econômica do empreendimento, pois supera largamente a taxa mínima exigida pelo BID, poderia obter ainda indicadores mais favoráveis, visto que outros tipos de benefícios comuns aos projetos de saneamento não foram incorporados no fluxo econômico, tais como redução das taxas de morbidade e mortalidade provocada por enfermidades de origem hídrica; melhorias dos hábitos e atitudes da população beneficiária, com respeito ao uso da água e disposição final; e promoção do desenvolvimento econômico, social e intelectual das comunidades através de melhorias das condições sanitárias.

O Quadro 1.18 apresenta, de forma resumida, o valor presente dos benefícios e dos custos (investimentos e OAM) e os indicadores de rentabilidade para o projeto da Barragem Patos e da Adutora de Nova Olinda.

QUADRO 1.18 - INDICADORES DA AVALIAÇÃO ECONÔMICA

DISCRIMINAÇÃO	RESULTADOS
BENEFÍCIOS (R\$)	6.663.927
CUSTOS (R\$)	2.106.488
Periódicos	412.901
Não periódicos	1.371.063
Variáveis	322.524
VALOR PRESENTE LÍQUIDO (R\$)	4.557.439
TAXA INTERNA DE RETORNO (%)	39,98

Os resultados relativos às análises de sensibilidade demonstram que a TIR é mais sensível às variações nos coeficientes de elasticidade-preço da demanda pela água que às variações no custo alternativo da água (Quadros 1.19 e 1.20).

QUADRO 1.19 - SENSIBILIDADE DA TAXA INTERNA DE RETORNO (TIR) A VARIAÇÕES NO COEFICIENTE DE ELASTICIDADE-PREÇO DA DEMANDA

SIMULAÇÕES	TAXA INTERNA DE RETORNO (%)
- 0,85 (menos 0,30)	28,65
- 0,75 (menos 0,20)	31,68
- 0,65 (menos 0,10)	35,40
- 0,55 (original)	40,12
- 0,40 (mais 0,10)	46,30
- 0,35 (mais 0,20)	55,08
- 0,25 (mais 0,30)	70,21

QUADRO 1.20 - SENSIBILIDADE DA TAXA INTERNA DE RETORNO (TIR) A VARIAÇÕES NO CUSTO ALTERNATIVO DA ÁGUA

SIMULAÇÕES	TAXA INTERNA DE RETORNO (%)
Menos R\$ 0,60	53,30
Menos R\$ 0,40	46,50
Menos R\$ 0,20	42,59
Original	39,98
Mais R\$ 0,20	38,08
Mais R\$ 0,40	36,64
Mais R\$ 0,60	35,48

De acordo com os resultados obtidos, conclui-se que a barragem Patos é viável do ponto de vista econômico.

ANEXOS

ANEXO I – CUSTOS DE O&M – SITUAÇÃO COM PROJETO

ANEXO II - RESULTADOS DO MODELO SIMOP

III - VIABILIDADE AMBIENTAL

1 - CONSIDERAÇÕES INICIAIS

1 - CONSIDERAÇÕES INICIAIS

O Estudo de Viabilidade Ambiental (EVA) ora apresentado, tem o objetivo de identificar e avaliar os impactos ambientais causados pelo barramento do riacho Patos, no município de Nova Olinda, no Estado do Ceará. Visa, ainda, a sugestão de medidas mitigadoras de modo a restabelecer o equilíbrio ecológico e promover o desenvolvimento regional a partir dos usos múltiplos propostos para o referido reservatório.

Os estudos desenvolvidos foram pautados nos critérios e diretrizes preconizados pela Resolução CONAMA no 001, de 23 de janeiro de 1986. Foram executados levantamentos dos fatores abióticos, bióticos e sócio-econômicos das áreas de influência física e funcional do empreendimento, visando caracterizar a situação vigente antes da implantação da Barragem Patos.

Com base no diagnóstico ambiental da área de influência do empreendimento e nos estudos de concepção do projeto elaborados pelo Consórcio ANB/HIDROSTUDIO, foram estabelecidas relações entre os componentes ambientais existentes e as ações propostas para o empreendimento. Em seguida foram identificados os principais impactos potenciais, os quais foram discriminados quanto ao caráter, extensão, reversibilidade, intensidade e duração/periodicidade. Por fim, foram definidas medidas visando a mitigação dos impactos adversos, além de programas de monitoramento e educação ambiental.

2 - ASPECTOS LEGAIS E INSTITUCIONAIS

2 - ASPECTOS LEGAIS E INSTITUCIONAIS

O aproveitamento dos recursos hídricos no Estado do Ceará é de extrema importância para o seu processo de desenvolvimento, uma vez que este estado é freqüentemente assolado por secas periódicas. O problema de escassez da água associado ao crescimento acelerado da população, vem provocando o aparecimento de regiões cujas potencialidades hídricas estão esgotadas ou sujeitas a racionamento do uso da água nos períodos de seca. Tal situação, torna necessária a implantação de reservatórios para o atendimento da crescente demanda hídrica. Tendo em vista que este tipo de projeto em geral encontra-se associado a uma ampla gama de impactos ambientais, faz-se necessário á implementação de um planejamento racional que abranja também os efeitos da degradação ambiental decorrentes da implantação deste tipo de projeto.

Assim sendo, faz-se necessário o conhecimento do suporte institucional existente, de modo a compatibilizar as ações preconizadas pelo projeto com a legislação ambiental vigente. Para tanto foram elaboradas sínteses dos aspectos legais e institucionais que regem a legislação ambiental, as quais são apresentadas a seguir.

A Lei n.º 6.938, de 31 de agosto de 1981, alterada pelas Leis nº 7.804/89 e 8.028/90 e regulamentada pelo Decreto nº 99.274/90, dispõe sobre a Política Nacional do Meio Ambiente, seus fins e mecanismos de formulação e aplicação, definindo diretrizes gerais de conservação ambiental, compatibilizando o desenvolvimento das atividades econômicas com a preservação do meio ambiente. Dentre às políticas ambientais a nível federal, pertinentes a projetos hidráulicos e meio ambiente, destacam-se os seguintes dispositivos legais:

- Constituição Federal;
- Decreto n.º 88.351, de 01 de junho de 1983: regulamenta a Lei nº 6.938/81 e estabelece os critérios para licenciamento das atividades modificadoras do meio ambiente;
- Resolução CONAMA n.º 001, de 23 de janeiro de 1986 (modificada no seu Artigo 2o pela Resolução CONAMA no 011, de 18/03/86): estabelece definições, responsabilidades, critérios básicos e diretrizes gerais para uso e implementação da Avaliação de Impacto Ambiental como instrumento da Política Nacional do Meio Ambiente;
- Decreto n.º 24.643, de 10 de julho de 1934: decreta o Código das Águas;
- Lei n.º 4.771, de 15 de setembro de 1965 (alterada pela Lei n.º 7.803, de 18/07/89): institui o Código Florestal;
- Resolução CONAMA n.º 004, de 18 de setembro de 1985 (alterada pela Lei n°7.803/89): define critérios, normas e procedimentos gerais para a caracterização e estabelecimento de reservas ecológicas;
- Resolução CONAMA n.º 020, de 18 de junho de 1986: estabelece a classificação e os padrões de qualidade das águas doces, salobras e salinas do território nacional;

- Lei n° 3.824, de 23 de novembro de 1960: exige o desmatamento da área da bacia hidráulica de reservatórios;
- Lei n.º 5.197, de 03 de janeiro de 1967: dispõe sobre a proteção à fauna;
- Portaria SUDEPE n°N-0001, de 04 de janeiro de 1977: dispõe sobre a observância de medidas de proteção à fauna aquática nos projetos de construção de barragens;
- Lei n.º 6.902, de 27 de abril de 1991: dispõe sobre a criação de estações ecológicas e áreas de proteção ambiental;
- Lei n.º 9.433, de 08 de janeiro de 1997: institui a Política Nacional de Recursos Hídricos e cria o Sistema Nacional de Gerenciamento de Recursos Hídricos;
- Portaria MINTER n.º 124, de 20 de agosto de 1980: baixa normas no tocante à prevenção de poluição hídrica;
- Decreto n.º 28.481, de 07 de dezembro 1940: dispõe sobre a poluição das águas;
- Lei n.º 7.754, de 14 de abril de 1989: estabelece medidas para proteção das florestas existentes nas nascentes dos cursos d'água;
- Decreto n.º 84.426, de 24 de janeiro de 1980: dispõe sobre erosão, uso e ocupação do solo, poluição da água e poluição do solo;
- Decreto n.º 89.336, de 31 de janeiro de 1984: dispõe sobre reservas ecológicas e áreas de relevante interesse ecológico e dá outras providências;
- Resolução CONAMA n.º 011, de 18 de março de 1986: altera e acrescenta incisos na Resolução CONAMA n.º 001/86 que torna obrigatória a elaboração de estudos de impacto ambiental para determinados tipos de empreendimentos;
- Resolução CONAMA n.º 005, de 15 de junho de 1988: exige o estabelecimento de processo licenciatório para as obras de captação de projetos de sistemas de abastecimento d'água, cuja vazão seja acima de 20,0% da vazão mínima da fonte hídrica, no ponto de captação, e que modifiquem as condições físicas e/ou bióticas dos corpos d'água;
- Portaria Interministerial n.º 917, de 06 de junho de 1982: dispõe sobre a mobilização de terra, poluição da água, do ar e do solo;
- Resolução CONAMA n.º 006, de 24 de janeiro de 1986: institui e aprova modelos para publicação de pedidos de licenciamento, sua renovação e respectiva concessão;
- Resolução CONAMA n.º 237, de 19 de dezembro de 1997: revisa os procedimentos e critérios utilizados no licenciamento ambiental.
- Resolução CONAMA n.º 009, de 03 de dezembro de 1987: regulamenta a questão das audiências públicas;

 Decreto-Lei no 95.733, de 12 de fevereiro de 1988: dispõe sobre a inclusão no orçamento dos projetos e obras federais, de recursos destinados a prevenir ou corrigir os prejuízos de natureza ambiental, cultural e social decorrentes da execução desses projetos e obras.

Por fim, a Lei n.º 9.605, de 12 de fevereiro de 1998, dispõe sobre as sanções penais e administrativas derivadas de condutas e atividades lesivas ao meio ambiente.

Quanto às políticas ambientais a nível federal, pertinentes a proteção do patrimônio pré-histórico, destacam-se os seguintes dispositivos legais:

- Decreto-Lei no 4.146, de 04 de março de 1942: dispõe sobre a proteção dos depósitos fossilíferos;
- Lei no 3.924, de 26 de julho de 1961: dispõe sobre a proteção dos monumentos arqueológicos e préhistóricos;
- Resolução CONAMA no 005, de 06 de agosto de 1987: aprova o Programa Nacional de Proteção ao Patrimônio Espeleológico;
- Portaria no 07, de 01 de dezembro de 1988, da Secretaria do Patrimônio Histórico e Artístico Nacional: estabelece os procedimentos necessários para pesquisa e escavações em sítios arqueológicos;
- Portaria IBAMA no 887, de 15 de junho de 1990: dispõe sobre a proteção do patrimônio espeleológico nacional;
- Decreto no 99.556, de 01 de outubro de 1990: dispõe sobre a proteção das cavidades naturais subterrâneas existentes no Território Nacional e dá outras providências;
- Portaria IBAMA no 57, de 05 de junho de 1997: institui o Centro Nacional de Estudo, Proteção e Manejo de Cavernas - CECAV, que tem por finalidade normatizar, fiscalizar e controlar o uso do patrimônio espeleológico brasileiro;
- Lei no 7.347, de 24 de julho de 1985: disciplina a ação civil pública de responsabilidade por danos causados ao meio ambiente, ao consumidor, a bens e direitos de valor artístico, estético, histórico, turístico e paisagístico, e dá outras providências.

A penalização pelo não cumprimento da legislação pertinente ao patrimônio pré-histórico citada é prevista no Código Penal Brasileiro (Parte especial, Título II - Dos crimes contra o patrimônio, Capítulo IV - Do dano).

No Estado do Ceará, o sistema de controle ambiental é integrado pela Secretaria da Ouvidoria Geral e Meio Ambiente, criada pela Lei n°13.093, de 08 de janeiro de 2001, à qual encontram-se vinculados o Conselho Estadual do Meio Ambiente (COEMA) e a SEMACE, ambos criados pelas Lei nº 11.411, de 28 de dezembro de 1987, que dispõe sobre a Política Estadual do Meio Ambiente. Os dispositivos legais a nível estadual, pertinentes a projetos hidráulicos e ao meio ambiente são os seguintes:

Constituição Estadual;

- Lei n.º 10.148, de 02 de dezembro de 1977: dispõe sobre a preservação e controle dos recursos hídricos existentes no estado e dá outras providências;
- Portaria SEMACE n.º 14, de 22 de novembro de 1989: estabelece normas técnicas e administrativas do sistema de licenciamento de atividades utilizadoras dos recursos ambientais no Estado do Ceará;
- Portaria SEMACE n.º 097, de 03 de abril de 1996: estabelece padrões de lançamentos nos corpos receptores para efluentes industriais e de outras fontes de poluição hídrica;
- Lei n.º 12.524, de 19 de dezembro de 1995: considera impacto sócio-ambiental relevante em projetos de construção de barragens, o deslocamento das populações habitantes na área a ser inundada pelo lago formado e dá outras providências;
- Lei n.º 11.996, de 24 de julho de 1992: dispõe sobre a Política Estadual de Recursos Hídricos e institui o Sistema Integrado de Gestão dos Recursos Hídricos no Estado do Ceará, o qual está a cargo da Companhia de Gestão dos Recursos Hídricos (COGERH).

Por sua vez, o Decreto n.º 23.067, de 11 de fevereiro de 1994, regulamenta o Artigo 4º da Lei n.º 11.996/92, na parte referente à outorga de direito do uso dos recursos hídricos e cria o Sistema de Outorga para Uso da Água. Segundo reza o referido decreto, dependerá de prévia outorga da Secretaria de Recursos Hídricos (SRH), o uso de águas dominiais do Estado que envolva:

- Derivação ou captação de parcela dos recursos hídricos existentes num corpo d'água, para consumo final ou para insumo de processo produtivo;
- Lançamento num corpo d'água de esgotos e demais resíduos líquidos e gasosos com o fim de sua diluição, transporte e assimilação;
- Qualquer outro tipo de uso que altere o regime, a quantidade e a qualidade da água.

No caso específico do lançamento de esgotos e de outros resíduos líquidos nos corpos d'água, a SRH não está ainda emitindo a concessão de outorga. Tal fato tem como justificativa a complexidade que envolve o assunto decorrente, principalmente, do caráter intermitente da quase totalidade dos cursos d'água do Estado.

O pedido de outorga de direito de uso de águas deverá ser encaminhado à SRH através do preenchimento de formulário padrão fornecido por esta, na qual deverá constar informações sobre destinação da água; fonte onde se pretende obter a água; vazão máxima pretendida; tipo de captação da água, equipamentos e obras complementares, bem como informações adicionais para a aprovação do pedido.

Quando a outorga envolver obras ou serviços de oferta hídrica sujeitos à licença prévia da SRH, conforme previsto no Decreto nº 23.068, de 11 de fevereiro de 1994 (açudes, transposição de água bruta, barragem de derivação ou regularização de nível d'água, e poços), será obrigatória a apresentação desta, aproveitando-se sempre que possível os dados e informações já apresentados para o licenciamento.

Outra legislação que se apresenta relevante para o projeto ora em pauta, embora tenha aplicação em termos legais restrita aos recursos hídricos da Região Metropolitana de Fortaleza, é a Lei nº 10.147, de 01 de dezembro de 1977, que dispõe sobre o disciplinamento do uso do solo para fins de proteção dos recursos hídricos.

Ressalta-se, ainda, embora não constitua dispositivo legal, o Plano Estadual de Recursos Hídricos elaborado pela SRH em meados de 1991, e a proposta para enquadramento dos principais cursos d'água do Estado do Ceará, elaborada pela SEMACE, tendo como base à classificação preconizada pela Resolução CONAMA n.º 020/86. A referida resolução estabelece padrões de qualidade para os cursos d'água em função de seus usos preponderantes e da sua capacidade de autodepuração. A nível municipal figuram como dispositivo legal à lei orgânica do município de Nova Olinda.

O futuro reservatório irá inundar terras pertencentes a terceiros, fazendo-se necessária à elaboração de um plano de desapropriações. Deverá ficar a cargo da SRH a execução de um levantamento cadastral dos imóveis na área diretamente afetada pelo projeto. A desapropriação deverá ser efetivada através de Decreto Estadual Específico, ficando a negociação e aquisição parcial ou total dos imóveis, que são abrangidos em parte ou na sua totalidade pela área de inundação máxima futura e pela faixa de proteção do futuro reservatório sob a responsabilidade da SRH.

O órgão empreendedor do projeto é a SRH. Os recursos financeiros necessários à implantação do empreendimento serão oriundos do Governo do Estado e de empréstimos obtidos junto ao Banco Mundial. Além do órgão empreendedor, prevê-se o envolvimento de outros órgãos governamentais na operação futura do reservatório.

Não foram constatados conflitos envolvendo a implantação do projeto ora em análise com outros programas ou projetos governamentais, pelo contrário, a obra encontra-se inserida num programa mais amplo denominado Programa de Gerenciamento e Integração dos Recursos Hídricos do Estado do Ceará (PROGERIRH).

3 - O PROJETO

3 - O PROJETO

3.1 - IDENTIFICAÇÃO DO EMPREENDEDOR

O órgão empreendedor do Projeto Básico da Barragem Patos é a Secretaria dos Recursos Hídricos do Estado do Ceará (SRH), órgão prestador de serviços, inscrito sob o CGC/MF nº 11.821.253/0001-42, estabelecido a Av. Gal. Afonso Albuquerque Lima, 01 - Centro Administrativo do Cambeba, Edifício SEDUC - Bloco C, 10 e 20 Andar, no município de Fortaleza, Estado do Ceará, com telefone para contato (85) 488-8500 e FAX (85) 488-8579.

3.2 - LOCALIZAÇÃO E ACESSOS

A Barragem Patos será formado pelo barramento do riacho Patos, afluente do rio Cariús, na região do Cariri, no Alto Jaguaribe, porção sudoeste do Estado do Ceará. A obra fechará o boqueirão existente na localidade denominada Cachoeira Grande, a aproximadamente 5,0 km da sede do município de Nova Olinda. O reservatório terá sua bacia hidráulica totalmente inclusa no território do município de Nova Olinda.

O acesso ao sítio do barramento partindo-se de Fortaleza é feito através da rodovia federal asfaltada BR-116, percorrendo-se cerca de 563 km até a cidade de Milagres, onde se toma a CE-293, na qual percorre-se 47 km até a cidade de Barbalha. Desta, segue-se pela CE-060 por cerca de 10 km até a cidade de Juazeiro do Norte, onde se toma a transitória 292/122 por 11 km até Crato. Percorre-se então 9 km pela transitória 494/122 até o triângulo de Nova Olinda, onde toma-se a CE-292 por 29 km até a referida cidade. A extensão total do percurso é de aproximadamente 669 km.

O acesso ao sítio do barramento é feito percorrendo-se uma estrada vicinal por 3,5 km até o povoado de Patos. Daí segue-se a pé pelo leito do riacho Patos, no sentido montante/jusante por cerca de 0,5km até o local do eixo barrável.

3.3 - OBJETIVOS E USOS MÚLTIPLOS

A implantação da Barragem Patos tem como objetivo servir para usos múltiplos, trazendo benefícios a pelo menos três diferentes setores. Em primeiro lugar garantirá o abastecimento d'água humano da cidade de Nova Olinda e dos distritos de Patos, Mamão e Taboleiro do Bonito, beneficiando no horizonte do projeto uma população urbana da ordem de 12.913 habitantes. Permitirá, ainda, o abastecimento da população ribeirinha de jusante. Foi previsto o atendimento de uma demanda humana de 2,86 l/s.

O segundo uso importante do reservatório encontra-se representado pelo atendimento da demanda hídrica das indústrias difusas do município de Nova Olinda.

O terceiro uso importante da Barragem Patos será o desenvolvimento da pesca no lago a ser formado. Haverá, ainda, desenvolvimento da irrigação difusa pela iniciativa privada na área de jusante e de atividades associadas à recreação/lazer, além da dessedentação animal.

3.4 - ESTUDOS DE ALTERNATIVAS LOCACIONAIS

No âmbito do Projeto Básico da Barragem Patos foram estudadas três alternativas de eixos barráveis (Eixo 1, Eixo 2 e Eixo 3), cuja distribuição ao longo do riacho Patos pode ser visualizada na Figura 3.1. Na análise das diferentes alternativas de eixo foram levados em conta os seguintes fatores:

- Hídricos: relativos aos recursos hídricos utilizáveis e às demandas inerentes;
- Técnicos: relacionados à morfologia dos boqueirões, as condições geotécnicas de fundação da obra e a existência de jazidas de empréstimo nas imediações;
- Econômico-financeiros: relativos à ordem de grandeza dos custos estimados de construção, exploração e dos benefícios esperados;
- Socioeconômicos: inerentes à necessidade de reassentamento de contingentes populacionais, à problemática relativa a submersão de solos agricultáveis e de infra-estruturas de uso público, notadamente interferências com rodovias e linhas elétricas;
- Ambientais: associados à submersão de áreas de relevante interesse ecológico (áreas indígenas, unidades de conservação e patrimônios histórico, arqueológico, paleontológico e espeleológico), bem como os riscos de salinização das águas a serem represadas ou de sua poluição por agrotóxicos ou por efluentes sanitários e industriais.

Quanto aos fatores hídricos, para a mesma cota de área inundada pelo reservatório é, obviamente, o Eixo 2 posicionado mais a jusante que possibilita a criação de um reservatório com maior capacidade de acumulação.

No que se refere aos recursos hídricos disponibilizados, o Eixo 2 é o que melhor rentabiliza os recursos existentes ao longo do trecho em estudo do riacho dos Patos. Obviamente, os eixos 1 e 3 situados mais a montante perdem as contribuições de alguns tributários. Com efeito, constata-se que ao Eixo 1 corresponde à perda de cerca de sete afluentes localizados entre o Eixo 2 e o Eixo 1, dos quais dois apresentam alguma expressão. Já no Eixo 3, a perda de área da bacia hidrográfica é insignificante quando comparada com o Eixo 1 de jusante.

Com relação às capacidades de armazenamento e regularização, a equiparação das alternativas de eixos barráveis só é possível com o aumento da altura do barramento de jusante para montante. Com efeito, para obtenção da mesma vazão regularizada faz-se necessário a elevação da altura do barramento de jusante para montante, com o Eixo 2 posicionado mais a jusante apresentando altura de cerca de 20m, com uma extensão máxima de cerca de 70m. Nos boqueirões situados mais a montante (Eixos 1 e 3), para as mesmas cotas de barramento, as extensões variam de 110m no Eixo 1 a 120m no Eixo 3. Este fato aliado à maior altura requerida para o barramento penaliza estas duas últimas alternativas em termos de volume de obra.

FIGURA 3.1 - ALTERNATIVAS DE EIXOS DE IMPLANTAÇÃO

No que se refere às condições de fundação das obras, as diferentes alternativas de barramento estudadas apresentam características geológicas praticamente semelhantes em termos litológicos e tectônicos, tendo o Eixo 2 como vantagem o fato de apresentar rocha aflorante em todo o leito do riacho e parte inferior das ombreiras.

Quanto à disponibilidade de materiais de construção dentro de uma distância econômica da área das obras, constata-se que as jazidas de materiais terrosos estão situadas nos topos dos morros fora da área da bacia hidráulica, apresentando pequenas espessuras, o que resultaria no desmatamento de grandes extensões de área, caso a barragem a ser implantada fosse de terra. Afloramentos rochosos adequados à exploração de materiais pétreos e/ou enrocamento são observados na área da bacia hidráulica. O material granular poderá ser obtido na calha do rio Cariús ou do próprio riacho dos Patos, entre os eixos 1 e 2, uma vez que as areias aí existentes apresentam excelente qualidade.

No que se refere aos fatores ambientais, nenhuma das alternativas estudadas apresenta interferências com áreas de unidades de conservação e terras indígenas. Os riscos de salinização das águas represadas ou de sua poluição por efluentes de esgotos domésticos e industriais, ou pelo aporte de agrotóxicos apresentam-se praticamente iguais quaisquer que seja a alternativa analisada. Situação semelhante é observada em relação aos riscos de dilapidação dos patrimônios histórico, arqueológico, paleontológico e espeleológico. Assim sendo, a única diferenciação observada entre as alternativas está associada à extensão da área a ser desmatada, que apresenta-se maior para o Eixo 2 e praticamente igual para os eixos 1 e 3.

Quanto aos aspectos socioeconômicos, observa-se que os solos a serem submersos são, em sua maioria, de bom potencial agrícola (Terra Roxa Estruturada, Podzólicos Eutróficos, Latossolos Vermelho Escuro e Aluviões), apresentando como restrições a escassez de recursos hídricos, além do relevo movimentado que dificulta a mecanização no caso da Terra Roxa Estruturada e dos Podzólicos, e dos riscos de inundações periódicas no caso dos Aluviões. Constitui exceção os solos Litólicos, que caracterizam-se pela baixa profundidade efetiva e pela pedregosidade/rochosidade superficial, tendo ocorrência restrita as áreas de relevo ondulado a forte ondulado. Desta forma, o Eixo 2 é o mais prejudicial sob este ponto de vista, sendo a situação correspondente aos eixos 1 e 3 mais favorável, dado a redução da área a ser submersa, já que as bacias hidráulicas correspondentes aos três eixos apresentam praticamente a mesma composição de solos.

Com relação a relocação de contingentes populacionais, esta apresenta-se igual para todas as alternativas de eixo estudadas, as quais resultam na inundação de apenas 15 habitações, perfazendo um contingente populacional a ser relocado de 72 pessoas, já que as áreas acrescidas no caso dos eixos 1 e 2 não são habitadas.

Em termos das áreas a serem desapropriadas dos imóveis rurais para formação do reservatório, a maior extensão de área é verificada no Eixo 2, atingindo valores da ordem de 36 ha. Nas demais alternativas estas áreas se reduzem para valores da ordem de 13 ha.

No que se refere à interferência com infra-estruturas de uso público, estas são praticamente equivalentes nas áreas dos eixos 1 e 3, estando restritas a trechos de rede elétrica de baixa tensão e de rodovias

vicinais que permitem o acesso as propriedades da área. No caso específico do Eixo 2, haverá um acréscimo em relação as outras duas alternativas de 300 m de rede elétrica monofásica e de um trecho de 500 m de uma estrada de serviços da CHESF.

A ponderação dos fatores acima descritos permitiu a análise comparativa das diferentes alternativas de eixos barráveis, tendo-se chegado a conclusão que a proximidade do Eixo 3 ao Eixo 1, sem alterações dos benefícios associados a redução do volume de concreto ou ao aumento significativo de bacia de contribuição, são fatores decisivos para a sua exclusão.

Com base no acima exposto foram selecionados os eixos 1 e 2 para serem submetidos a uma análise comparativa mais detalhada. Sobre estes eixos foram efetuados comparações considerando as cotas do sangradouro, capacidade de acumulação d'água, volumes anuais regularizados com 90,0% de garantia, áreas irrigáveis, quantidade de pessoas abastecidas e custos de implantação avaliados preliminarmente para esta fase. Deve-se frisar que as opções de irrigação intensiva e abastecimento humano estudadas são excludentes, ou seja, ou se irriga ou se faz o abastecimento d'água dos núcleos urbanos.

Pode-se afirmar que o Eixo 1 apresenta a menor relação de custo-benefício, ou seja, uma menor rentabilização de recursos hídricos. Face ao exposto, foi assumido pelo Consórcio HIDROSTUDIO/ANB para o local de implantação da barragem Patos, o boqueirão associado ao Eixo 2.

5.5 - DESCRIÇÃO E ARRANJO GERAL DAS OBRAS

A Barragem Patos na cota do sangradouro 448,00m definida nos estudos finais terá uma capacidade de acumulação de 2.221.192 m³ e vazão regularizada de 0,707 hm³/ano com 90,0% de garantia, com a área do reservatório abrangendo 36 ha. A bacia de contribuição do reservatório, com área de 8,463km², está englobada totalmente no território do município de Nova Olinda, na Sub-bacia do Alto Jaguaribe. O tempo médio de detenção do reservatório será de 2,0 anos e este apresenta uma eficiência hidrológica (volume regularizado anual/ capacidade total do reservatório) de 31,8%. A razão entre a área de inundação e a vazão regularizada será de 16,4 km²/(m³/s), enquanto que o coeficiente de armazenamento (volume armazenado/volume afluente) será de 1,8.

O estudo do arranjo das estruturas ligadas à Barragem Patos baseou-se no melhor aproveitamento das condições topográficas e geológico-geotécnicas do local das obras, buscando para cada estrutura um posicionamento favorável técnica e economicamente. O arranjo geral das obras pode ser visualizado na Figura 3.2, e consta das seguintes estruturas:

- uma barragem de concreto, com altura máxima de 21,0 m, comprimento da crista de cerca de 70 m e volume total de 6.600m³;
- um descarregador de fundo incorporado na estrutura da barragem e localizado na margem direita;
- vertedouro dimensionado para a capacidade total de extravasão, localizado na própria barragem, apresentando largura de 20,0m e soleira na cota 448,00m, com escada no parametro de jusante para dissipação de energia, e muros laterais.

FIGURA 3.2 - ARRANJO GERAL DAS OBRAS

4 - DIAGNÓSTICO AMBIENTAL

4 - DIAGNÓSTICO AMBIENTAL

4.1 - ÁREAS DE ABRANGÊNCIA

4.1.1 - Área de Influência Física

A área de influência física do empreendimento está representada pela bacia hidráulica do reservatório e por sua faixa de proteção periférica, perfazendo, aproximadamente, um total de 73,33 ha, compreendendo parte da zona rural do município de Nova Olinda, pelas áreas de jazidas de empréstimos, localizadas dentro da bacia hidráulica do reservatório ou nas suas cercanias, bem como pelas áreas do canteiro de obras e dos bota-foras.

4.1.2 - Área de Influência Funcional

A área de influência funcional do empreendimento compreende aquelas áreas que serão influenciadas pela operação do reservatório, quais sejam:

- municípios de Nova Olinda que será contemplado com o reforço no fornecimento d'água regularizado à sede municipal, atendendo as demandas humana e industrial, beneficiando no horizonte do projeto uma população de 1.648 habitantes;
- áreas periféricas ao reservatório que se beneficiarão com o desenvolvimento da pesca no lago a ser formado;
- a) áreas ribeirinhas de jusante que serão beneficiadas com a regularização de vazão e conseqüente desenvolvimento da irrigação difusa, além do abastecimento humano difuso e dessedentação animal.

4.2 - MEIO ABIÓTICO

4.2.1 - Aspectos Geológicos e Geomorfológicos

4.2.1.1 - Geologia

A geologia da área da bacia hidráulica do reservatório é constituída, predominantemente, por rochas cristalinas pertencentes ao pré-Cambriano (Complexo Gnáissico-Migmatítico), aparecendo em menor escala as coberturas sedimentares tércio-quaternárias representadas pelas aluviões do riacho Patos. Nas áreas das obras, observa-se a ocorrência de arenitos da Formação Cariri, com intercalações caulínicas e sílticas, podendo ocorrer, também, siltitos calcíferos e calco-areníticos.

Ocorrem, ainda, na região circunvizinha, no domínio do embasamento cristalino, a seqüência Cachoeirinha Superior, constituída, predominantemente, por filitos e micaxistos. No embasamento sedimentar, merece destaque o Grupo Araripe, cujo pacote aflorante no extremo sul da região, composto pelas formações Santana e Exu, dá origem à Chapada do Araripe, à Formação Cariri, que integra a Bacia Sedimentar do Araripe como seu membro basal e Coberturas Coluvioeluviais, que ocorrem sob a

forma de pequenas mesetas a noroeste de Nova Olinda. Apresenta-se, a seguir, uma breve descrição das litologias presentes nas áreas do sítio barrável e da bacia hidráulica do reservatório.

O Complexo Gnáissico-migmatítico ocorre em cerca de 90% da área englobada pela bacia hidráulica do reservatório. Litologicamente, a seqüência é constituída de gnaisses e migmatitos variados, freqüentemente intercalados por quartzitos, metarcósios e anfibolitos. Subordinadamente, ocorrem corpos de rochas calcossilicáticas concordantes com o bandemento gnáissico.

Na área do eixo do barramento, ocorrem arenitos aflorantes em todo o leito do riacho e parte inferior das ombreiras. São arenitos de coloração cinza escura, de granulometria fina, silicificados e extremamente duros, com comportamento e parâmetros de resistência de rocha cristalina sã. As estruturas observadas no arenito são representadas pelo acamamento e fraturas coincidentes com o mesmo, de freqüência baixa ou ocasional. Apresentam direção geral N55E, com mergulho da ordem de 60° para jusante (SE). Embora a atitude das estruturas seja desfavorável, a superfície das mesmas se apresenta rugosa, ondulada e irregular, quase sempre selada, com parâmetros geomecânicos de resistência provavelmente elevados e, talvez, baixas permeabilidades.

Na superfície da rocha aflorante, onde foi possível o acesso e inspeção, não foi constatada a existência de falha geológica, e o caráter irregular e assimétrico do "cannyon" faz supor que o riacho não tenha se afeiçoado a alguma estrutura importante, tendo apenas esculpido zonas com menor grau de silicificação para se insinuar. Cerca de 50 m a montante, na margem esquerda, foram registradas fraturas abertas no topo do maciço rochoso. As ombreiras apresentam matacões à superfície, indicativos de depósitos de tálus pouco espessos, dado a alta declividade das encostas.

As aluviões aparecem de forma mais representativa ocupando o terraço e o leito fluvial do riacho Patos, nos trechos onde o vale apresenta-se mais largo, com terraços marginais inundáveis durante os períodos de enchentes. Via de regra, a espessura da faixa de aluviamento é pequena. Litologicamente, estão representadas por areias quartzosas de coloração variegada e granulação fina a grosseira, incluindo cascalhos com tamanho até matacões e argilas.

4.2.1.2 - Geomorfologia

Na região onde será assente o empreendimento observa-se quatro unidades de relevo: a Depressão Sertaneja, os Maciços Residuais, a Chapada do Araripe e a Planície Fluvial do rio Cariús e tributários. Destas morfologias, apenas a Chapada do Araripe e os maciços residuais não estão presentes nas áreas englobadas pelo sítio do barramento e pela bacia hidráulica do reservatório.

A Depressão Sertaneja é o domínio geomorfológico de maior representatividade na região. Corresponde a uma superfície de aplainamento, onde o trabalho erosivo se fez sobre as rochas do Complexo Gnáissico-migmatítico. Caracteriza-se por apresentar topografia suave ondulada, cortada ocasionalmente por afloramentos rochosos.

Os Maciços Residuais são representados por serras e morros, constituídos por rochas granitícomigmatíticas e gnáissicas ou por arenitos, formados a partir da erosão diferencial que rebaixou as áreas circundantes, de constituição litológica menos resistente. Apresentam-se dissecados em feições de colinas e em forma de inselbergs. Merece destaque, na região, a serra da Picada situada a nordeste do reservatório.

No território da área do empreendimento, destaca-se a planície fluvial do riacho Patos, como a mais significativa. O vale do riacho Patos a jusante do barramento é do tipo "V", bastante encaixado, de encostas muito íngremes. Termina em um pequeno "cannyon", com desnível de 15 a 20 m, antes de desaguar no rio Cariús. No trecho a montante do eixo barrável o vale se torna mais amplo e propício a sedimentação. Transversalmente, a partir do talvegue, é observado, nos trechos onde o vale se alarga, a formação de áreas de várzeas sujeitas a inundação durante o período chuvoso.

Ao sul do reservatório proposto, ergue-se a Chapada do Araripe, que forma uma extensa elevação tabuliforme. Apresenta-se com o topo plano e bem conservado, com nível altimétrico de 900 m. O topo é mantido por rochas pertencentes à Formação Exu, que expõe uma cornija - parte superior do relevo sustentado pela camada resistente – arenítica, de notável espessura e com perfil verticalizado. As vertentes íngremes das bordas abaixo da cornija apresentam rochas pertencentes à Formação Santana. Nas médias e baixas vertentes a leste da chapada, preponderam sedimentos do Grupo Missão Velha, observando-se um nítido espraiamento dos vales, que coalescem com terrenos do embasamento cristalino, constituindo parcelas significativas de terras pertencentes à Depressão Sertaneja.

4.2.1.3 - Recursos Minerais

Quanto aos recursos minerais, constatou-se no Município de Nova Olinda a ocorrência de um depósito de gipsita no Sítio Pedra Branca, garimpos clandestinos de calcário laminado (pedra Cariri) e de uma lavra de argila, cujo detentor da única concessão deste município é a Cerâmica Norguaçu S.A., estando todos posicionados fora da área de influência física do empreendimento ora em análise.

Com relação à ocorrência de minerais na área a ser ocupada pela bacia hidráulica da Barragem Patos, durante a pesquisa de campo efetuada pelo Consórcio HIDROSTUDIO/ANB constatou-se apenas a presença de materiais pétreos, terrosos e granulares usados principalmente na construção civil. Segundo informações prestadas pelo DNPM - Departamento Nacional de Produção Mineral não foram requeridos junto a este órgão, até o presente momento, licenças para a exploração de recursos minerais na área englobada pela bacia hidráulica da Barragem Patos.

Não foi constatada a presença de rochas carbonatadas na área, não havendo riscos de ocorrência de pontos de fuga que possam vir a comprometer a integridade do reservatório e a morfologia da região de entorno.

4.2.1.4 - Sismicidade Induzida

No Ceará as regiões sísmicas estão concentradas na região nordeste do Estado: Cascavel (Pitombeiras), Chorozinho, Pacajus e Palhano. Dessas regiões, foi Pacajus a que apresentou eventos de maior magnitude, chegando a atingir em 1980, 5,2 graus na escala Richter e intensidade VII na escala Mercalli. O Quadro 4.1 mostra a relação dos sismos com magnitudes superiores a 3,0 mb ocorridos no Estado do Ceará.

Quanto à ocorrência de eventos sísmicos na área do estudo, observa-se que num raio de 100 km em torno do eixo estudado, há registro de ocorrência de atividades sísmicas em duas localidades, Jardim e Nova Betânia (Farias Brito), cujas distâncias aproximadas da área do eixo são de 70,0 km e 25,0 km. Ressalta-se que, nenhuma dessas regiões são consideradas como áreas com tradição em eventos sísmicos.

Tendo em conta que os eventos sísmicos registrados são de magnitude baixa, e que a carga hidráulica associada ao reservatório é baixa, com valor máximo de 20m, não são esperados questionamentos associados a sismicidade induzida que, tradicionalmente, são apenas tratadas em regiões de sismicidade moderada e para cargas hidráulicas máximas da ordem de 100 m

Quadro 4.1

Relação dos Sismos com Magnitude mb ≥ 3,0

Ocorridos no Estado do Ceará

Localidade	Data	Magnitude (Mb)	Intensidade (mm) (1)	Observações
BATURITÉ	02/1903	3,9	-	3 sismos
BATURITÉ	02/11903	4,1	VI	2 sismos
MARANGUAPE	24/11/1919	4,5	VI	-
ARACATI	14/04/1928	4,0	VI	-
PEREIRO	1968	3,9 - 4,5	V - VII	5 sismos
				(janeiro a março)
BEBERIBE	03/1974	-	V	Vários sismos
SÃO LUIZ DO CURU	1974/ 1976	3,4	VI	sismos alternados
IBARETAMA	07/1976	-	V	-
IBARETAMA	12/03/1977	3,9	-	-
PACAJUS	20/11/1980	5,2	VII	-
CASCAVEL(PITOMBEIRAS)	22/04/1995	3,8	VI	-

FONTE: Ferreira, J.M., Sismicidade no Rio Grande do Norte in Simpósio sobre Sismicidade Atual em João Câmara (RN). Rio de Janeiro, 10 a 11 de novembro de 1986.p.32-48.

Berrocal, J. et alli, Sismicidade do Brasil. São Paulo, JAG/USP,1984

Defesa Civil do Ceará.

Nota: (1) Intensidade Modificada de Mercalli.

4.2.2 - Solos

4.2.2.1 - Caracterização dos Solos da Área do Empreendimento

Os solos de maior expressão na área englobada pela bacia hidráulica da Barragem Patos são a Terra Roxa Estruturada Similar, em associação com Podzólicos Vermelho Amarelo, Litólicos e Latossolos Vermelho Escuro, todos eutróficos. Em seguida aparecem numa escala relativamente reduzida os Solos Aluviais da planície do riacho Patos. Observa-se que, em termos de potencial agrícola, a maior parte dos solos que serão submersos apresentam bom potencial agrícola, tendo como fatores restritivos aos seus usos, além da escassez de recursos hídricos, a pequena profundidade efetiva e a presença de pedregosidade/rochosidade superficial no caso dos Litólicos; os empecilhos a mecanização nas áreas de relevo movimentado no caso da Terra Roxa e dos Podzólicos. Os solos com potencial para desenvolvimento hidroagrícola estão representados pela Terra Roxa, nas áreas de relevo suave ondulado, pelos Latossolos e pelas Aluviões. Não foi constatada a presença de solos salinos na bacia de contribuição do futuro reservatório. Apresenta-se a seguir a descrição dos tipos de solos identificados na área do empreendimento.

a) Terra Roxa Estruturada Similar

São solos profundos, de textura argilosa, bem drenados, forte a moderadamente ácidos e de coloração normalmente vermelha a vermelha escura. Ocorrem em relevo suave ondulado a ondulado. Apresentam média a alta fertilidade natural e boas condições físicas, podendo ser feito o uso de maquinário nas áreas onde o relevo é favorável.

A principal limitação ao uso agrícola decorre da escassez de recursos hídricos. Embora sejam solos de boa fertilidade natural e com alta saturação de bases, a baixa soma de bases trocáveis, os baixos teores de fósforo assimilável e a carência de reserva mineral que possa liberar para as plantas, faz com que necessitem, periodicamente, de adubações complementares.

São aproveitados com cultivos de milho, feijão e algodão, muitas vezes consorciados. A maior parte da área é aproveitada com pecuária extensiva.

b) Podzólicos Vermelho Amarelo Eutróficos

São moderadamente profundos a rasos, com média a baixa acidez e fertilidade natural média a alta. Via de regra são solos moderadamente drenados, com os solos rasos apresentando drenagem moderada ou imperfeita. O horizonte A fraco a moderado, possui textura argilosa e tonalidade bruna a acinzentada. A transição para o horizonte B é gradual, sendo este com textura argilosa, apresentando uma cerosidade variável e coloração variando desde bruna até avermelhada. De um modo geral, esses solos possuem bom potencial agrícola, dependendo da disponibilidade hídrica e das condições de relevo.

Com relação ao uso agrícola atual estes solos são, nas áreas onde predomina relevo menos movimentado, bastante utilizados com milho, feijão, algodão e pecuária extensiva. Para o

aproveitamento racional com agricultura, estes solos exigem práticas de conservação simples nas áreas de relevo suave ondulado e de maior complexidade à medida que o relevo vai se tornando mais movimentado. Práticas simples de adubação podem ser necessárias.

Na área da bacia hidráulica do reservatório, ocorrem associados a relevos ondulado a forte ondulado, o que torna pouco propício o seu aproveitamento para desenvolvimento da atividade hidroagrícola.

c) Litólicos Eutróficos

São solos rasos, de textura arenosa/média, apresentando pedregosidade/ rochosidade superficial, drenagem moderada a acentuada, sendo bastante susceptíveis à erosão face à reduzida espessura.

Não se prestam ao uso agrícola, razão pela qual geralmente apresentam a sua cobertura vegetal preservada. Apresentam fortes limitações no que se refere à deficiência d'água no período seco e à difícil mecanização, em face da pequena profundidade dos solos e da pedregosidade/rochosidade superficial. São comuns as presenças de afloramentos rochosos associados a este tipo de solo.

São geralmente destinados à pecuária extensiva, sendo necessária a introdução de pastagens artificiais e a formação de reserva forrageira para o período seco. Atualmente constata-se nas áreas onde o horizonte A é mais espesso, pequenos cultivos de subsistência.

d) Latossolos Vermelho Escuros

São solos profundos, de textura argilosa, bem a fortemente drenados, moderadamente ácidos a praticamente neutros e de média a alta fertilidade natural. Ocorrem em relevo plano a suave ondulado, apresentando condições físicas favoráveis ao uso da mecanização. São explorados com culturas de subsistência (milho, feijão e mandioca), bem como com pastagens naturais e pecuária extensiva em meio a vegetação natural.

Apresentam como principal limitação ao uso agrícola a escassez de recursos hídricos. Requerem a adoção de adubações complementares e de métodos de conservação dos solos mesmo nas áreas de relevo suave ondulado. Em grande parte dispensam a calagem.

e) Solos Aluviais Eutróficos

São solos de fertilidade natural alta, com drenagem moderada a imperfeita, sem problemas de erosão, mas com riscos periódicos de inundação. São moderadamente profundos a muito profundos. Ocupam as partes de cotas mais baixas da região, em relevo plano a suave ondulado, possuindo maior expressão geográfica quando ocorrem ao longo do riacho Patos, a montante do eixo barrável.

Apresentam texturas variadas desde arenosas até argilosas. Quanto às propriedades químicas, apresentam reação desde moderadamente ácida até alcalina, argila de atividade alta, baixa saturação de alumínio e alta saturação de bases.

São solos de grande potencialidade para a agricultura, não sofrendo maiores restrições ao seu uso, devendo ser cultivados intensivamente. A principal limitação ao uso agrícola decorre da falta d'água, face às insuficientes precipitações pluviométricas nas áreas semi-áridas. Há limitações ao uso de maquinário agrícola, principalmente nos solos argilosos imperfeitamente drenados. Além disso, as áreas destes solos estão sujeitas aos riscos de inundações periódicas.

Nas áreas secas, há necessidade de irrigação e drenagem, as quais devem ser conduzidas rigorosamente de maneira racional, a fim de evitar os riscos de salinização dos solos, haja vista que os teores de sódio em algumas áreas são significativos. Nas áreas de ocorrência destes solos, nota-se um aproveitamento agrícola intensivo, estando às várzeas do riacho Patos exploradas pela iniciativa privada através da agricultura de sequeiro.

4.2.2.2 - Uso Atual dos Solos

Com base nas imagens de satélite LANDSAT, na escala de 1:100.000, complementadas com checagem de campo, o uso atual dos solos na região onde será implantada a Barragem Patos, caracteriza-se como uma zona de potencialidade agrícola alta, cujas atividades sofrem a influência das irregularidades climáticas. A pecuária é a atividade principal, sendo caracterizada pela criação extensiva, em grandes propriedades, de bovinos de corte. A agricultura tradicional integrada está baseada nos cultivos de algodão, milho, feijão e arroz com produções voltadas para subsistência e abastecimento do mercado local. O plantio de fruteiras apresenta-se pouco representativo. A cultura do algodão, apesar de tradicional, não tem respondido às expectativas de produção, devido ao ataque de pragas (bicudo).

Quanto a situação das matas ciliares, as várzeas do riacho Patos apresentam trechos com cobertura vegetal substituída por cultivos agrícolas e campos de macegas, encontrando-se relativamente preservada na área compreendida entre o eixo barrável e a localidade de Jenipapeiro, bem como a jusante do barramento, principalmente nos trechos onde o vale apresenta-se mais encaixado. A jusante do eixo barrável constata-se a presença de uma queda d'água (Cachoeira Grande) utilizada pela população do município como área de recreação e lazer.

Na área da bacia hidráulica da Barragem Patos observa-se o predomínio da caatinga de porte arbustivo (cerca de 90,0% da área), a qual apresenta maiores níveis degradação ao longo da planície fluvial do riacho Patos. Observa-se ao longo deste curso d'água e em alguns trechos de terras altas a substituição da caatinga por cultivos de subsistência (milho, feijão e arroz) e capineiras. Constata-se, ainda, a presença de áreas degradadas pelo extrativismo da lenha e para formação de pastos, bem como áreas em descanso, prática associada à agricultura itinerante desenvolvida na região. Não foi constatado o desenvolvimento de atividade hidroagrícola na área da bacia de contribuição da Barragem Patos, nem tão pouco na área englobada pela sua bacia hidráulica.

4.2.3 - Clima

Segundo a classificação de Köppen, a área do empreendimento possui um clima do tipo Aw' - tropical chuvoso, quente e úmido, com estação chuvosa concentrada no verão outono. Dentro dos parâmetros estabelecidos por Gaussen, o clima local é 4 bth - termoxeroquimênico médio tropical quente, com o período de estiagem durando de 5 a 6 meses e um índice xerotérmico entre 100 e 150. Para caracterização do clima da área do projeto, optou-se pela adoção dos dados provenientes da estação hidroclimatológica de Barbalha, a qual localiza-se relativamente próxima à área do estudo e apresenta uma boa disponibilidade e qualidade de dados.

O regime pluviométrico da região é caracterizado pela heterogeneidade temporal, verificando-se uma concentração da precipitação no primeiro semestre, e uma variação em anos alternados de seus totais. Geralmente, a estação chuvosa tem início no mês de dezembro e se prolonga até maio. O trimestre mais chuvoso é o de fevereiro/abril respondendo por 63,5% da precipitação anual. No semestre janeiro/junho este índice atinge 87,8%. A pluviometria média anual é de 1.001,4 mm, podendo-se constatar desvios acentuados em torno desta média, em decorrência da distribuição irregular das chuvas.

A temperatura média anual oscila entre 23,8°C e 26,8°C, apresentando, no decorrer do dia, valores mínimos entre 6 e 7 horas e máximos entre 14 e 15 horas. Os meses de outubro, novembro e dezembro apresentam as mais altas temperaturas do ano, enquanto que as menores temperaturas são registradas nos meses de junho e julho.

A umidade relativa média anual é de 63,6%, apresentando seus maiores valores no trimestre mais úmido (março/maio), quando ultrapassa 79,0%. Já no período de estiagem, as taxas decrescem, atingindo valores em torno de 52,0%, de agosto a dezembro.

A insolação média anual é da ordem de 2.848,0 horas, o que corresponderia, em tese, a aproximadamente 65,0% dos dias do ano, com luz solar direta. O trimestre de maior insolação é o de agosto/outubro e o de menor insolação é o de fevereiro/abril.

A nebulosidade definida como as décimas partes encobertas do céu, apresenta valores máximos nos meses mais chuvosos, chegando a atingir 8,0 décimos em maio e o mínimo de 3,0 décimos no mês de agosto, período de estiagem. A nebulosidade média anual é de 5,8 décimos.

A evaporação média anual é da ordem de 2.288,6 mm, com o período de estiagem (julho/dezembro) respondendo por 65,1% do total anual, apresentando no mês de ápice, taxa média em torno de 9,8 mm/dia. Nos meses chuvosos, essa taxa cai para 3,4 mm/dia, sendo que o trimestre março/maio responde por apenas 15,5% da evaporação anual.

4.2.4 - Recursos Hídricos

a) Hidrografia

A bacia hidrográfica do riacho Patos até o local do barramento, na localidade de Cachoeira Grande, no município de Nova Olinda, abrange uma área de 8,463km², estando situada na Bacia do Cariús, no Alto Jaguaribe.

Situada sobre terrenos de formação geológica predominantemente cristalina, razão de seu alto poder de escoamento e possuindo uma rede de drenagem dendrítica, a bacia hidrográfica do rio Cariús drena uma área de 5.264,0 km2. Ao longo de seu curso o rio Cariús percorre um total de 124,5 km, desde suas cabeceiras, na região da Chapada do Araripe, localizada no sul do Estado, até desaguar no rio Bastiões, nas proximidades da cidade de Cariús. A declividade média do rio Cariús é da ordem de 0,169%.

Bacia de configuração longilínea, apresenta um índice de compacidade de 1,13. O regime do rio Cariús é intermitente, destacando-se como principais afluentes os riachos Muquém e Cordeiro, pela margem direita, e o riacho Romão, pela margem esquerda. Apresenta nível de açudagem pouco significativo, contando apenas com reservatórios de pequeno e médio porte, que não permitem a perenização dos seus cursos d'água. Não conta com perímetros irrigados no seu território, sendo observado o desenvolvimento da irrigação difusa pela iniciativa privada, principalmente, próximo as cabeceiras do rio Cariús, onde observa-se o predomínio de áreas agrícolas e antropizadas.

Nesta bacia a Barragem Patos barrará o riacho homônimo, cuja bacia hidrográfica drena até o barramento uma área de 8,463km ², apresentando comprimento do talvegue de 4,159km, com declividade média de 0,0057m/m. O riacho Patos tem suas nascentes nas imediações da serra da Picada e desemboca no rio Cariús, a cerca de 300 m a jusante do eixo barrável, na localidade denominada Cachoeira Grande, sem existência de afluentes significativos.

b) Fontes de Poluição Hídrica Existentes e Potenciais

Poluição por Efluentes de Esgoto Urbano

Atualmente, um dos maiores problemas enfrentados pela região que compreende a Bacia do Cariús é a poluição dos recursos hídricos pelo aporte de efluentes de esgotos domésticos, industriais e hospitalares lançados a céu aberto, ou canalizados diretamente para os cursos d'água sem tratamento prévio.

A bacia de contribuição da Barragem Patos, no entanto, não conta com núcleos urbanos de porte posicionados no seu território, que possam vir a contribuir com o aporte de efluentes sanitários e industriais a este manancial hídrico, sendo considerados nulos os riscos de poluição das águas aí represadas por efluentes de esgotos. O povoado de Patos, que encontra-se posicionado vizinho a faixa de proteção do reservatório poderá ser contemplado com a dotação de um sistema de esgotamento sanitário, centrado no uso de fossas sépticas, caso essa medida se faça necessária.

Riscos de Poluição das Águas Represadas por Agrotóxicos

Não foi constatada a presença de perímetros públicos de irrigação na bacia de contribuição da Barragem Patos. Além disso, a irrigação difusa é uma prática pouco disseminada nesta região, dado a escassez de recursos hídricos e ao predomínio de áreas com relevo movimentado, não propícias ao uso hidroagrícola. Assim sendo, pode-se afirmar que os riscos de poluição das águas represadas na Barragem Patos pelo aporte de agrotóxicos são atualmente praticamente nulos.

• Riscos de Salinização das Águas Represadas

A Barragem Patos não conta com a presença de solos salinos na sua bacia de contribuição, o que aliado ao baixo tempo de detenção da água no reservatório, torna praticamente nulos os riscos de salinização das águas represadas. Assim sendo, esta questão não precisa ser considerada na operação deste reservatório.

c) Qualidade das Águas Superficiais

Dado o seu caráter intermitente não foi possível apresentar no presente relatório dados sobre a qualidade das águas do riacho dos Patos em termos físico-químicos e bacteriológicos, devendo por ocasião do estabelecimento da quadra invernosa ser efetuada uma campanha de amostras com esta finalidade.

Objetivando analisar a qualidade dos recursos hídricos superficiais da região foram apropriados os dados do Monitoramento Indicativo do Nível de Salinidade efetuado pela COGERH, englobando os reservatórios posicionados na bacia do rio Cariús, do qual o riacho Patos se constitui num dos principais afluentes.

Quanto ao nível de salinidade, as campanhas de monitoramento empreendidas pela COGERH, em meados de 2001, nos principais açudes do Estado do Ceará revelam que o único açude monitorado na bacia do rio Cariús (açude Muquém) apresenta águas com níveis de salinidade baixo (CE inferior a 0,25 miliSiemens, a 25°C), sendo classificadas para irrigação como do tipo C1. O referido reservatório integra a relação dos 20 reservatórios com menor concentração de cloretos do Estado.

4.2.5 - Recursos Hídricos Subterrâneos

Os sistemas aqüíferos que ocorrem na bacia hidráulica da Barragem Patos podem ser classificados como aqüíferos sedimentares, representados pelas aluviões do riacho Patos e arenitos da Formação Cariri, e cristalinos, estes últimos chegando a ocupar cerca de 90% da área. Dentro do contexto aqui estudado, a implantação da Barragem Patos poderá influir na alimentação destes aqüíferos através de processos de infiltração vertical.

O aqüífero cristalino apresenta a sua permeabilidade e coeficiente de armazenamento associados à extensão, grau de abertura e conexão das zonas de fraturamento das rochas, tendo um potencial

hidrogeológico fraco. A recarga se dá através da pluviometria, rede hidrográfica e Aluviões, apresentando, no entanto, a circulação bastante restrita. Quanto à qualidade das águas, os aqüíferos cristalinos apresentam potabilidade dentro do limite de passável a medíocre, devido a elevada concentração salina.

O aqüífero aluvial apresenta potencial hidrogeológico elevado a médio, tendo sua alimentação assegurada pelas precipitações e pelas infiltrações laterais provenientes dos cursos-d'água nos períodos de enchentes. Funcionam como exutórios a evapotranspiração e os rios para os quais as águas do aqüífero são drenadas no período de estiagem. Quanto à qualidade das águas, as aluviões, apesar da alta vulnerabilidade, apresentam águas de boa potabilidade, com resíduo seco, quase sempre inferior a 500 mg/l.

O aqüífero Cariri ocorre de forma bastante restrita na área do empreendimento. Apresenta bom potencial hidrogeológico, sendo explotado através de poços tubulares com profundidade média de 130 m, que refletem uma capacidade específica de 1,03 m³/h/m, permeabilidade de 2,97 x 10-6 m/s e transmissividade de 2,43 x 10-3 m²/s. Suas águas são de boa qualidade, não existindo restrições para o consumo humano.

4.3 - MEIO BIÓTICO

4.3.1 - Flora

A cobertura vegetal da área engloba pela bacia hidráulica da Barragem Patos pode ser dividida nos seguintes ecossistemas: caatinga hipoxerófila e matas ciliares e lacustres. A caatinga hipoxerófila constitui a principal formação vegetacional da área em estudo, sendo caracterizada pelo caráter xerófilo. Em termos fitofisionômicos a cobertura vegetal da área apresenta na sua quase totalidade uma fisionomia arbustiva densa, relativamente degradada nas imediações do leito do riacho Patos nos trechos onde o vale apresenta-se mais largo, apresentando espécies arbóreas remanescentes.

Aparecem entre as espécies arbóreas desta comunidade: pau branco (Auxemma oncocalyx), catingueira (Caesalpinia pyramidalis), sabiá (Mimosa caesalpiniaefolia), jucá (Caesalpinia ferrea) e pereiro (Aspidosperma pyrifolium), entre outras. O estrato arbustivo é composto por mofumbo (Combretum leprosum), marmeleiro preto (Croton sonderianus), matapasto (Cassia sericea) e velame (Croton campestris). Nas áreas degradadas é freqüente a presença da jurema preta (Mimosa acustitipula).

Na área da bacia hidráulica do reservatório a caatinga apresenta-se preservada no trecho compreendido entre o eixo do barramento e a localidade de Jenipapeiro. A montante desta área, apresenta-se relativamente descaracterizada, pela interferência antrópica, através da agricultura itinerante, pecuária extensiva e retirada de lenha. Observa-se a presença de áreas ocupadas com vegetação secundária (capoeiras de caatinga), que não oferece nenhuma proteção ao solo e não possui nenhum valor econômico.

As planícies fluviais dos cursos d'água que cortam a área são ocupadas por matas de várzeas, onde se observa a ocorrência de espécies como juazeiro (Zizyphus joazeiro) e oiticica (Licania rigida), além de espécies arbustivas, gramíneas, ciperáceas e trepadeiras. A mata ciliar do riacho Patos apresenta-se descaracterizada, estando substituída em diversos pontos por campos de macegas e capoeiras de caatinga, sendo observado um aumento progressivo das áreas antropizadas nos trechos onde o vale apresenta-se mais largo, mais especificamente a montante da localidade de Jenipapeiro.

4.3.2 - Fauna

A semi-aridez vigente na região da bacia hidráulica do reservatório, aliada aos constantes desmatamentos e caça predatória vem contribuindo para que a fauna local se apresente pobre em espécies e com baixo grau de endemismo.

Dentre os mamíferos, as espécies remanescentes apresentam, geralmente, pequeno porte e são reprodutivamente prolíficos, apresentando em geral hábitos noturnos. Aparecem como representantes desta classe: raposa, preá, peba, guaxinim, entre outros. Com relação aos répteis, aparecem com certa abundância cobras, camaleões, tejos e tijubinas, com destaque para as cobras venenosas, dentre as quais a jararaca, a cascavel e a salamandra.

A ornitofauna apresenta-se bastante diversificada na área, muito embora seja alvo predileto dos caçadores. Na área em pauta as espécies abundantes são rolinhas, anuns, tetéus, nambus, galos de campina, etc. As espécies extintas ou ameaçadas de extinção são periquito, seriema, carcará, sericóia, gavião, sabiá, etc.

Quanto aos insetos, encontram-se na região pragas nocivas à agricultura como o bicudo do algodoeiro, gafanhotos e lagartas, bem como espécies transmissoras de doenças (barbeiros). Os aracnídeos encontram-se representados pelas aranhas, escorpiões e lacraias, tendo como habitat preferencial, a caatinga.

A ictiofauna dos rios da região é pobre e altamente adaptada à ecologia regional. As espécies nativas mais comuns são: traíra, curimatã comum, cangati, cará, piaba, piau comum e camarão pitu (crustáceo). Algumas espécies de peixes (curimatã, piau, piaba) descem e sobem o rio "mãe" na época da desova, fenômeno conhecido como piracema. Quanto as espécies piscícolas predadoras, foi constatada a presença de piranhas e pirambebas na bacia do rio Cariús.

4.3.3 - Unidades de Conservação

A região do estudo conta com duas unidades de conservação, ambas administradas pelo IBAMA - Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. A Área de Proteção Ambiental (APA) da Chapada do Araripe, criada pelo Decreto Federal de 04/08/97, compreende o topo, a encosta e parte do pediplano da Chapada do Araripe, contando com uma área de 1.063.000 ha, com seu perímetro envolvendo 11 municípios do Piauí, 12 de Pernambuco e 15 do Ceará. Estando incluso entre

estes últimos os municípios de Brejo Santo, Mauriti, Milagres, Abaiara, Missão Velha, Jati, Penaforte, Juazeiro do Norte, Araripe, Crato, Barbalha, Porteiras, Jardim, Santana do Cariri e Salitre. A outra unidade de conservação presente na região é a Floresta Nacional do Araripe, criada pelo Decreto-Lei n°9.226, de 2 de junho de 1946, que conta com uma área de 38.262 ha, estando posicionada integralmente sobre o pediplano da Chapada do Araripe.

A Barragem Patos não irá interferir com as áreas das referidas unidades de conservação, nem tão pouco irá resultar em pressão antrópica sobre seus territórios, visto que estas se encontram posicionadas a mais de 5,0 km da sua bacia hidráulica.

4.4 - MEIO ANTRÓPICO

4.4.1 - Área de influência Funcional

4.4.1.1 - Aspectos Demográficos

Compõe a área de influência funcional do empreendimento, o município de Nova Olinda, situado na Microrregião do Cariri, porção sul do Estado, e que ocupa uma área geográfica de 290,7 km2. De acordo com o IBGE, em 2000, a população total do município era constituída por 12.077 habitantes. Nesse ano, a taxa de urbanização atingiu um percentual de 52,9%.

A carga demográfica calculada para o município foi de 41,54 hab/ km2, menor que a densidade demográfica constatada para o Estado (50,77 hab/ km2). No que se refere à análise da estrutura populacional por sexo, observou-se uma dominância do sexo feminino sobre o masculino, com 50,6% contra 49,4%.

A taxa anual de crescimento da população total verificada no período intercensitário de 1996/2000, demonstrou crescimento de 1,67% ao ano. Nesse período, a população urbana apresentou um crescimento significativo, com taxa de 4,80%, enquanto a população rural regrediu a uma taxa de -1,36% ao ano.

A estrutura etária da população revela a predominância da população jovem, traço comum na região Nordeste e no Estado. Tal fato é confirmado pelas estatísticas, visto que 47,3% da população total do município é composta por pessoas com idade inferior a 20 anos de idade. A população em idade adulta (20-59 anos), compreende 39,2% da população total. Com uma participação bem inferior, 13,5% do contingente populacional, aparecem os maiores de 60 anos.

Com relação à distribuição de renda, os dados do IBGE (2000) indicam que 70,7% das pessoas responsáveis pelos domicílios recebe mensalmente rendimentos menores que dois salários mínimos, comprovando o baixo padrão de vida da população.

A taxa de analfabetismo atinge um percentual de 34,7% de analfabetos e semianalfabetos entre o total de pessoas maiores de cinco anos de idade, índice superior ao registrado para o Estado (29,3%). Entre

a população economicamente ativa esse percentual cai para 30,6%, mesmo assim, esse percentual ainda é considerado elevado.

Constitui outro importante parâmetro para análise da qualidade de vida e o progresso humano de populações, o Índice de Desenvolvimento Humano, que leva em conta para o seu cálculo, além do PIB "per capita", variáveis como expectativa de vida, longevidade e nível educacional. Para o município de Nova Olinda o IDH-M em 1991, atingiu 0,403, índice bastante satisfatório se comparado ao IDH-M do Estado (0,517).

4.4.1.2 - Infra-estrutura Física e Social

a) Setor Educacional

O setor educacional do município dispõe de três níveis regulares de ensino (pré-escolar, fundamental e médio). Os estabelecimentos de ensino somavam, em 1999, um total de 42 escolas, sendo a maioria (64,3%) dedicada ao ensino fundamental.

O número de alunos matriculados nestes estabelecimentos, no período letivo de 1999, atingiu 4.471 alunos. O maior número de alunos foi matriculado no ensino fundamental (77,2%) e no pré-escolar (14,9%). O corpo docente que ministra aula aos ensinos pré-escolar, fundamental e médio perfaz um total de 212 professores.

As taxas de evasão do ensino fundamental e médio corresponderam, respectivamente, a 15,43% e 24,62%. A taxa de repetência é maior no ensino médio , 14,97% , contra 12,83% no ensino fundamental.

b) Setor Saúde

Os serviços de atendimento médico-hospitalar no município estão abaixo das reais necessidades da comunidade, conforme acontece na maior parte das cidades nordestinas. Em 1998, o número de unidades de saúde ligadas ao SUS - Sistema Único de Saúde correspondia a quatro. O município não dispunha de hospital. A relação leito por habitante correspondia a 2,13 leito para cada grupo de 1.000 habitantes, menor que a relação constatada para o Estado do Ceará (2,41 leitos/1.000 habitantes).

Em termos de equipe atuante na área de saúde, um total de 72 profissionais, com destaque para médicos e agentes comunitários de saúde que respondem por 30,5% e 29,2% do total da equipe, respectivamente. Estes últimos atuam na medicina preventiva, acompanhando 2.295 famílias, perfazendo uma população total assistida de 10.121 pessoas.

Dentre as doenças de veiculação hídrica, dados da SESA - Secretaria de Saúde do Estado indicaram a ocorrência, em 1999, de 3 casos de hepatite viral. Em 2001, foram confirmados um caso de hepatite viral e 2 casos de febre tifóide. A ocorrência dessas doenças se deve à falta de saneamento básico adequado.

A taxa de mortalidade infantil calculada para o município, em 2000, atingiu 20,07 óbitos entre os menores de um ano de idade por mil nascidos vivos, menor que a TMI calculada para o Estado (28,75%o). Conforme nota da SESA, a TMI, à rigor, não deveria ser calculada para municípios com número de nascidos vivos inferior a 500 por inconsistência da informação.

c) Setores de Comunicação e Transportes

No caso específico da telefonia, existiam, até junho de 2001, 484 terminais telefônicos instalados no município de Nova Olinda. A entidade mantedora dos serviços telefônicos é a Telemar. A ECT - Empresa Brasileira de Correios e Telégrafos, mantinha em 1998, uma agência de correios na sede municipal.

O setor de transportes é constituído por rodovias estaduais e municipais, sendo as rodovias CE-292 (asfaltada) e CE-166 (implantada) as principais vias de acesso à sede municipal. As estradas municipais que permitem o acesso às localidades e fazendas mostram-se em situação física precária na estação chuvosa. Em 1998, a rede rodoviária municipal apresentava uma extensão total de 104km.

d) Energia Elétrica e Saneamento Básico

Em 2000, existiam no município um total de 2.664 ligações de energia elétrica nas diversas classes de consumo, predominando a classe residencial, com 75,2% das ligações. Na zona rural, eram atendidos 381 consumidores (14,3% do total). O consumo total de energia atingiu no referido ano, 4.727 mwh, sendo a maior taxa de consumo alcançada pelo setor industrial (32,9% do consumo total). O fornecimento de energia elétrica se encontra a cargo da COELCE - Companhia de Eletrificação do Ceará.

O abastecimento d'água é operado pela CAGECE - Companhia de Água e Esgoto do Ceará. Segundo dados do IBGE, em 2000, 51,8% dos domicílios do município contava com rede geral de abastecimento, sendo 48,2% desprovidos desse tipo de benefício, precisando se utilizar de outras fontes tais como poços, carros pipas, etc. O sistema atualmente operado pela CAGECE tem como fonte hídrica três poços profundos, cujas vazões são insuficientes para o pleno atendimento da demanda, além de apresentarem água de péssima qualidade, com elevado teor salino. Dos distritos de Patos, Mamão e Taboleiro do Bonito, que também serão beneficiados com fornecimento d'água regularizado atendendo 125 famílias, apenas os dois últimos são atualmente atendidos por poços tubulares, cujas águas são de boa qualidade, embora apresentem vazões insuficientes para atender a demanda de suas populações.

Quanto ao sistema de esgotamento sanitário, o município de Nova Olinda apresentava, em 2000, 26,1% dos domicílios atendidos com rede geral de esgotos, entretanto, os efluentes não recebiam tratamento. Os domicílios que tinham como escoadouro sanitário fossas sépticas e/ou rudimentares perfaziam 30,4% do total, 41,2% não dispunha de instalações sanitárias e 2,3% destinava os efluentes a valas ou outro tipo de escoadouro.

Com relação ao destino final do lixo, em 2000, segundo o IBGE, 47,2% dos domicílios de Nova Olinda eram atendidos pela coleta pública, sendo considerável o percentual de domicílios que lançava o lixo em terrenos baldios (34,0%), enquanto que 18,5% destinavam o lixo à queima e/ou enterrio, entre outros.

4.4.1.3 - Atividades Econômicas

a) Setor Primário

De acordo com o IBGE, em 1996, a atividade agropecuária predominante no município era a pecuária, participando com cerca de 61,4% do valor bruto da produção do setor. Em termos de participação na formação do PIB municipal, observou-se, em 1998, uma contribuição de 12,2% das atividades do setor primário.

Com relação à área colhida, dados do IPLANCE de 1999, apontam as culturas do milho, feijão e arroz como as mais representativas, com respectivamente, 1.400 ha, 1.300 ha e 1.000 ha colhidos. Quanto ao valor da produção, a cultura mais representativa era o arroz, vindo em seguida o feijão e o milho.

A pecuária do município apresentava como efetivo de principal retorno econômico, em 1997, o rebanho bovino (5.153 cabeças) voltado para a produção mista. Quanto aos efetivos de pequeno e médio porte, destaca-se o plantel avícola com 28.490 cabeças, suíno (1.420 cabeças), caprino (375 cabeças), equino (341 cabeças) e ovino (308 cabeças). Geralmente, boa parte dos efetivos de pequeno e médio porte são destinados à subsistência dos produtores.

O nível tecnológico empregado na atividade agropecuária é baixo, considerando o pequeno percentual de propriedades que possuem armazéns a granel (3,1%), algum tipo de veículo como caminhão, utilitário ou reboque (1,6%) e tratores (1,5%).

b) Setores Secundário e Terciário

O setor industrial do município de Nova Olinda dispunha, em 2000, de 23 estabelecimentos cadastrados, sendo o maior número (56,5%) pertencente ao ramo de indústrias de transformação. Os gêneros com maior número de estabelecimentos industriais foram Produtos de Minerais Não Metálicos (6 indústrias) e Mobiliário (3 indústrias). A indústria extrativa contava com 10 estabelecimentos cadastrados. Nesse mesmo ano, a participação do setor secundário na formação do PIB municipal atingiu 20,2%.

Quanto ao setor terciário, foram cadastrados em 2000, 143 estabelecimentos comerciais ativos, geralmente pertencentes ao ramo de Produtos de Gêneros Alimentícios, e apenas um estabelecimento de serviços, pertencente ao setor de Saneamento, Limpeza Urbana e Construção. A participação do setor terciário na formação do PIB municipal atingiu 67,6%, constituindo o setor de maior contribuição.

4.4.1.4 - Estrutura Fundiária

A estrutura fundiária vigente no município revela de imediato, a grande concentração fundiária típica da região Nordeste, onde a pequena e a média propriedade prevalecem em número sobre a grande propriedade ocupando, entretanto, um baixo percentual da área total.

Em 1999, conforme dados do IPLANCE, as pequenas propriedades classificadas como minifúndio chegavam a representar 84,2% do número total de propriedades ocupando apenas 38,0% da área total dos imóveis. Por outro lado, as médias propriedades, representando apenas 1,8% do total dos imóveis rurais, ocupavam 25,3% da área total das propriedades rurais.

4.4.2 - Área de Influência Física

4.4.2.1 - Generalidades

Foram efetuados levantamentos expeditos de campo na área da bacia hidráulica da Barragem Patos, em meados de 2002, por equipe do Consórcio HIDROSTUDIO/ANB, os quais procuraram englobar todas as propriedades que serão afetadas com a implantação do reservatório.

Os levantamentos efetuados procuraram obter informações relativas ao número de propriedades a serem desapropriadas e suas respectivas áreas, infra-estruturas de uso público a serem atingidos, populações a serem remanejadas e atividades econômicas a serem paralisadas, entre outros. Apresenta-se a seguir a caracterização da área da bacia hidráulica elaborada com base nos dados levantados em campo.

4.4.2.2 - Estrutura Fundiária

Os levantamentos preliminares de campo efetuados pelo Consórcio HIDROSTUDIO/ANB permitiram identificar que o número de imóveis atingidos pela formação do reservatório apresenta-se relativamente pouco significativo, perfazendo apenas 16 imóveis rurais.

A situação fundiária vigente na área da bacia hidráulica da Barragem Patos denota uma alta concentração de terras. Com efeito, a área da bacia hidráulica do referido reservatório abrange total ou parcialmente a área de 16 imóveis rurais, perfazendo uma área total de 786,5 ha, com apenas quatro propriedades não tendo suas áreas informadas (Quadro 6.2). As pequenas e médias propriedades com áreas de 20-50 ha e de 50-100 ha correspondem a 68,7% do número total de imóveis, ocupando 23,0% da área total. Por outro lado, uma única propriedade com área superior a 600 ha, que representa apenas 6,3% do número total de imóveis, ocupa 77,0% da área total.

4.4.2.3 - População Atingida

Quanto aos aspectos demográficos, a área onde será implantada a Barragem Patos apresenta, em geral, densidade demográfica rarefeita, sendo relativamente comum à presença de habitações desocupadas, tendo sido constatado que 50,0% dos imóveis atingidos não são habitados. A maior concentração populacional está associada ao povoado de Patos, que conta com 60 famílias, das quais

apenas 8,3%, ou seja, cinco famílias residem na parte do povoado que será englobada pela faixa de proteção do reservatório.

A população a ser desalojada da área da bacia hidráulica da Barragem Patos perfaz um contingente de 72 pessoas, distribuídas em 15 famílias. Deste contingente populacional, 34,7% estão associados ao povoado de Patos, enquanto que o restante encontra-se distribuído pelas propriedades rurais.

Quadro 4.2
Estrutura Fundiária da Área do Projeto

Classes de Propriedades	n.º de Imóveis	%	Área Total dos Imóveis (ha)	%
<20	8	50,0	54,7	7,0
20-50	2	12,4	71,2	9,1
50-100	1	6,3	54,6	6,9
100-600	-	-	-	-
>600	1	6,3	606,0	77,0
Sem área informada	4	25,0	-	-
TOTAL	16	100,0	786,5	100,0

FONTE: HIDROSTUDIO/ANB, Pesquisa de campo, 2002.

Com base nos valores apresentados, pode-se afirmar, que o contingente populacional a ser remanejado (72 pessoas) apresenta-se pouco expressivo. Além disso, a maioria das propriedades contará com áreas remanescentes, nas quais parte deste contingente populacional certamente será reassentado, visto que apenas cinco famílias terão as áreas dos seus imóveis totalmente desapropriadas.

4.4.2.4 - Terras Indígenas

De acordo com informações fornecidas pela FUNAI - Fundação Nacional do Índio, não há ocorrência de reservas indígenas na área da bacia hidráulica da futura Barragem Patos, nem tão pouco nos territórios dos municípios que integram a Sub-bacia do Alto Jaguaribe.

4.4.2.5 - Infra-Estruturas de Uso Público a serem Atingidas

Com a formação do reservatório proposto, algumas infra-estruturas de uso público serão submersas fazendo-se necessário suas relocações, estando estas representadas por rodovias e redes elétricas.

O setor elétrico encontra-se representado por redes de distribuição de baixa tensão (trifásica e/ou monofásica). O setor rodoviário da bacia hidráulica é constituído preferencialmente por estradas vicinais que permitem o acesso as propriedades rurais e aos núcleos urbanos da região. A formação do reservatório, no entanto, resultará, também, na submersão de um trecho com cerca de 500 m de uma estrada de serviço da CHESF, que permite a manutenção da rede elétrica Crato-Nova Olinda.

4.4.2.6 - Atividades Econômicas a serem Paralisadas

As atividades econômicas a serem paralisadas na área da bacia hidráulica da Barragem Patos encontram-se representadas, principalmente, pela pecuária extensiva, seguida pela agricultura de subsistência, esta última centrada nos cultivos de milho, feijão, arroz e capineiras. A produção agrícola destina-se a subsistência do produtor rural e sua família na maioria das propriedades pesquisadas. Cerca de 25,0% dos imóveis atingidos não são explorados economicamente.

A atividade pecuária é praticada de forma extensiva, estando centrada no rebanho bovino. A alimentação do rebanho é complementada com restos culturais e em algumas propriedades com forrageiras.

4.4.2.7 - Patrimônio Cultural, Histórico, Arqueológico e Paleontológico

Não foi constatado na área da bacia hidráulica do futuro reservatório a ocorrência de monumentos históricos, sítios arqueológicos e paleontológicos, ou cavernas e grutas tombados, em processo de tombamento ou apenas identificados preliminarmente pelos órgãos competentes.

Em consulta realizada ao IPHAN - Instituto do Patrimônio Histórico e Artístico Nacional - 4ª Coordenação Regional, sobre a ocorrência de sítios arqueológicos na região do estudo, este órgão informou que não constam em seus arquivos o registro de sítios arqueológicos no município de Nova Olinda, o que não significa a inexistência destes na região.

Com efeito, a região do Cariri possui grande significância histórica e cultural para o Ceará, estando aí localizados alguns dos primeiros núcleos de ocupação do Vale do Jaguaribe, havendo registros de sítios arqueológicos nos municípios de Campos Sales (líticos polidos) e Lavras da Mangabeira (esqueletos humanos).

Quanto ao patrimônio paleontológico, a Chapada do Araripe, na região do Cariri, é reconhecida no meio científico como um dos sítios paleontológicos mais importantes do mundo, pela sua riqueza e diversificação. Abriga nos sedimentos calcíferos aí existentes uma rica fauna fossilizada representada por espécies de ostracoídes, moluscos, equinóides e peixes diversos. Os registros de ocorrências paleontológicas na região do Cariri, estão associados tanto a Chapada do Araripe como a sua área de entorno. Tais ocorrências foram registradas nos municípios de Crato, Salitre, Assaré, Várzea Alegre e Mauriti ocorrendo em áreas que distam de 10 a 50 km das sedes dos municípios citados.

Em termos de patrimônio espeleológico, na região do empreendimento ocorre a Chapada do Araripe, que se constitui numa província espeleológica ainda pouco conhecida. Quanto a área da bacia hidráulica, não há informações geológicas suficientes para afirmar se podem ocorrer cavernas nesta área. Porém a exemplo do que ocorre com os patrimônios arqueológico e paleontológico, deverão ser realizados estudos preliminares, e se for o caso de evidências positivas, pesquisas mais aprofundadas, que permitirão avaliar a possível perda de ecossistemas.

5 - IDENTIFICAÇÃO E AVALIAÇÃO DOS IMPACTOS AMBIENTAIS

5 - IDENTIFICAÇÃO E AVALIAÇÃO DOS IMPACTOS AMBIENTAIS

5.1 - METODOLOGIA ADOTADA

O método de avaliação adotado para a análise ambiental do projeto será uma listagem de controle (checklist) escalar. Consiste numa lista de todos os parâmetros e fatores ambientais que podem ser afetados pela implantação e operação do empreendimento, acrescidas da atribuição de uma escala de valores subjetivos aos parâmetros. O referido método atribui valores numéricos ou em forma de símbolos (letras e sinais) para cada fator ambiental, permitindo assim que sua avaliação qualitativa.

Desta forma, os impactos ambientais identificados serão discriminados de modo sistemático na checklist, considerando o seu caráter benéfico ou adverso, à nível dos meios abiótico, biótico e antrópico. Na análise dos impactos serão considerados os critérios de extensão; natureza; horizonte temporal, ou seja, a partir de quanto o impacto passa a ocorrer; reversibilidade; intensidade e duração/periodicidade, sendo adotado os seguintes indicadores:

- Extensão: 1- Restrita a área parcial dentro do projeto, 2- Abrange toda a área do projeto, 3- Abrange a área do projeto e atinge parcialmente a área de influência funcional, 4- Abrange a área do projeto e atinge toda a área de influência funcional, 5- Abrange a área de influência funcional do projeto e 6- Abrange parcialmente a área do projeto e a área de influência funcional;
- Natureza: D Direto e I Indireto
- Horizonte Temporal: i Imediatamente, m A médio prazo e I A longo prazo;
- Reversibilidade: R Reversível e lr Irreversível;
- Intensidade: F Fraco, M Médio e Ft Forte;
- Duração/Periodicidade: T Temporário (Tc De curta duração, Tm De média duração e TI De longa duração), P - Permanente e C - Cíclico.

Objetivando melhorar a visualização da dominância do caráter dos impactos na checklist, o método adota a prática de colorir de verde os impactos benéficos e de vermelho os adversos. As tonalidades forte, média e clara dessas cores indicam, respectivamente, a importância significativa, moderada ou não significativa do impacto. Complementando a análise empreendida é designada a probabilidade de ocorrência dos impactos como alta, média e baixa.

5.2 - CHECKLIST DE AVALIAÇÃO DOS IMPACTOS

A checklist de identificação e avaliação dos impactos ambientais concernentes ao Projeto da Barragem Patos é apresentada no Quadro 5.1. Os impactos foram lançados segundo as etapas do empreendimento (implantação e operação), considerando os meios abiótico, biótico e antrópico. No caso específico da checklist elaborada para o projeto ora em análise os símbolos (letras ou sinais) foram substituídos pela grafia do significado correspondente visando facilitar a compreensão da avaliação empreendida.

QUADRO 5.1 (1/3)

3 páginas

5.3 - DESCRIÇÃO DOS IMPACTOS AMBIENTAIS IDENTIFICADOS

5.3.1 - Impactos sobre o Meio Abiótico

Durante a implantação do empreendimento os impactos adversos incidentes sobre o meio abiótico da área das obras civis decorrem, principalmente, dos desmatamentos localizados e dos cortes, aterros e escavações requeridos durante à construção das obras e explorações das áreas de empréstimos. Haverá emissão em larga escala de poeiras e poluição acústica prejudicando temporariamente a qualidade do ar, além de pequenos abalos sísmicos provocados pelas detonações de explosivos durante a exploração de pedreira.

Haverá perdas pontuais da qualidade dos solos decorrentes do desencadeamento de processos erosivos, resultando no carreamento superficial de sólidos para os cursos d'água periféricos. Consequentemente, haverá contribuições ao assoreamento dos leitos fluviais dos referidos cursos d'água e um aumento dos níveis de turbidez das águas.

Com o desmatamento da área da bacia hidráulica do reservatório (36 ha), haverá uma redução das taxas de infiltrações das águas pluviais, principalmente nas áreas com permeabilidade do solo baixa, com reflexos negativos sobre a recarga dos aqüíferos. As condições climáticas da área serão alteradas ocorrendo uma pequena elevação da temperatura, ao nível de microclima, devido à erradicação da vegetação, visto que a bacia hidráulica apresenta uma parte de sua área com cobertura vegetal relativamente preservada. Em contrapartida, o desmatamento objetiva a preservação da qualidade da água represada, uma vez que evita a sua eutrofização pelo apodrecimento da vegetação que seria submersa.

As degradações impostas pela remoção da infra-estrutura existente na área da bacia hidráulica (poeira, ruídos, erosão dos solos e assoreamento dos cursos d'água) serão irrelevantes, estando restritas a áreas pontuais, uma vez que serão atingidas apenas 15 habitações na área da bacia hidráulica e que destas apenas cinco estão posicionadas no povoado de Patos, estando as demais dispersas pelas propriedades rurais.

Durante a exploração das jazidas de empréstimos haverá retirada da camada de solo fértil e exposição das áreas exploradas a ação de agentes erosivos, com risco de instabilidade dos taludes laterais das cavas de jazidas de material terroso e do areial. Consequentemente, haverá carreamento de sedimentos para os cursos d'água periféricos produzindo turbidez e assoreamento, além de redução da infiltração das águas pluviais diminuindo a recarga dos aqüíferos. A poeira e os ruídos gerados serão decorrentes dos desmatamentos pontuais, dos movimentos de terra, do intenso tráfego de máquinas e veículos, das operações da usina de concreto e da central de britagem, e dos usos de explosivos na exploração da pedreira.

Quanto à ocorrência de patrimônio paleontológico nas áreas das obras, os levantamentos de campo, desenvolvidos em caráter preliminar, não detectaram nenhuma evidência da presença de sítios paleontológicos, entretanto dado a proximidade da Chapada do Araripe, área reconhecida como um dos sítios paleontológicos mais importantes do mundo pela sua riqueza e diversificação, os órgãos competentes declararam ser a região do estudo rica neste tipo de patrimônio, tendo sido registrado a presença de sítios paleontológicos nos municípios de Crato, Assaré, Salitre e Mauriti, todos integrantes da região do Cariri, razão pela qual faz-se necessário o desenvolvimento de estudos mais acurados antes do início das obras.

Quanto à submersão de grandes extensões de solos agricultáveis, pode-se afirmar que cerca de 46,0% dos solos existentes na área da bacia hidráulica do reservatório apresentam limitações ao desenvolvimento hidroagrícola. Apresentam como restrições ao uso agrícola a pedregosidade e/ou rochososidade superficial, a pouca profundidade efetiva e a susceptibilidade a erosão, no caso dos Litólicos e condições físicas pouco propícias a mecanização dado o relevo ondulado a forte ondulado no caso dos Podzólicos Vermelho Amarelo Equivalente Eutróficos. Os Solos Aluviais que apresentam elevado potencial agrícola, por sua vez, sofrem riscos de inundações periódicas, enquanto que os solos do tipo Latossolo Vermelho Escuro e Terra Roxa Estruturada Similar apresentam como principal limitação a escassez de recursos hídricos, requerendo apenas irrigação e adubações complementares.

Merece ressalva, no entanto, o fato da Barragem Patos não contar com a presença de solos com elevados teores de sódio nos horizontes subsuperficiais (Planossolos Solódicos e Solonetzs Solodizados) na sua bacia de contribuição, além de apresentar tempo de detenção baixo (2,0 anos), sendo portanto bastante reduzidos os riscos de salinização das águas represadas. Assim sendo, esta questão não precisa ser considerada na operação do reservatório.

O meio abiótico sofrerá, ainda, a redução temporária do escoamento natural do riacho Patos durante a época chuvosa por ocasião da construção das obras; alterações no nível do lençol freático nas áreas de entorno do reservatório com a formação do lago, e redução do incremento anual de sedimentos nas planícies de inundação das áreas de jusante que não terão os nutrientes dos solos renovados naturalmente. Haverá, ainda, a possibilidade de desencadeamento de processos erosivos a jusante do reservatório, uma vez que a retenção de sedimentos pelo barramento liberará para jusante uma água limpa com elevado potencial erosivo, entretanto está não deverá ser significativa, já que o riacho neste trecho apresenta uma planície fluvial relativamente estreita, sendo o vale bem encaixado, não havendo riscos de deslocamento do talvegue do rio e consequente formação de meandros.

Com o início da operação do reservatório haverá, também, aumento na disponibilidade de recursos hídricos superficiais na bacia do rio Cariús permitida pela perenização do riacho Patos e de um trecho do rio Cariús e pela própria presença do reservatório, possibilitando o abastecimento d'água da população ribeirinha de jusante, bem como da cidade de Nova Olinda e dos distritos de Patos, Mamão e Taboleiro do Bonito, beneficiando no ano 2030 uma população da ordem de 1.648 habitantes. Haverá, ainda, o

desenvolvimento da irrigação difusa nas áreas ribeirinhas de jusante e da piscicultura extensiva no lago a ser formado, além da dessedentação animal.

Ressalta-se ainda que o desenvolvimento da irrigação difusa proporcionado pela implantação do empreendimento ora em análise, certamente resultará num ligeiro aumento no consumo de agrotóxicos, havendo riscos de poluição hídrica principalmente nas imediações das áreas irrigadas. Tal impacto, no entanto, pode ser revertido com a difusão através de um programa de educação ambiental de regras sobre o uso e manejo correto de agrotóxicos junto aos produtores rurais. O fornecimento de uma vazão regularizada para o suprimento da demanda humana urbana e industrial, por sua vez, implicará em incrementos na poluição hídrica associados ao lançamento de efluentes sanitários e industriais "in natura" a céu aberto ou a sua canalização para os cursos d'água, o que pode ser contornado com a implementação de um sistema de esgotamento sanitário na cidade de Nova Olinda.

Os riscos de poluição das águas represadas por efluentes sanitários provenientes de núcleos urbanos posicionados a retaguarda da Barragem Patos, encontra-se restrito apenas a presença do distrito de Patos, encontrando-se posicionado vizinho à faixa de proteção do reservatório, tendo cinco das suas 60 habitações aí englobadas. Quanto à poluição por efluentes industriais, a bacia de contribuição da Barragem Patos não conta com indústrias com potencial poluidor dos recursos hídricos situadas na área de sua bacia de contribuição.

Quanto à possibilidade de interferência hidrológica com outros reservatórios, a Barragem Patos localizase numa bacia onde não existem grandes reservatórios a montante, sendo constatada apenas a presença do açude Muquém (47,63 hm³) a jusante, ou seja, não recebe afluências significativas de vertimentos a montante e os seus próprios vertimentos só podem ser armazenados a jusante pelo açude Muquém..

Quanto aos riscos de sismicidade induzida, estes são praticamente nulos, visto que os eventos sísmicos registrados na área de influência do reservatório são de pequena magnitude e que a carga hidráulica associada ao reservatório é baixa, com valores máximos de 20,0 m e médios de 13,0 m.

5.3.2 - Impactos sobre o Meio Biótico

Os impactos negativos sobre o meio biótico ocorrerão logo após a desapropriação dos imóveis, pois haverá incentivo ao aumento da exploração extrativa vegetal, com o intuito de obtenção de benefícios em termos de renda. Tal atividade impactará negativamente a flora e provocará pequena evasão da fauna para as áreas circunvizinhas. Na instalação do canteiro de obras, os desmatamentos requeridos também atingirão pequena monta e estarão restritos a uma área pontual, incorrendo em danos a flora e degradação do habitat da fauna, só que numa escala relativamente reduzida.

Assim sendo, o impacto mais significativo que incide sobre o meio biótico decorre do desmatamento zoneado da área da bacia hidráulica do reservatório. Devido à erradicação extensiva da cobertura vegetal haverá perda do patrimônio florístico e genético da flora e destruição do habitat da fauna

terrestre e ornitofauna (aves), o que pode resultar em extinção de algumas espécies nativas, alterando a composição da fauna. Ressalta-se que na área da bacia hidráulica da Barragem Patos a fisionomia da vegetação apresenta-se variável, observando-se um predomínio da caatinga arbustiva densa, alternando-se com cultivos agrícolas e áreas com capeamentos gramíneo-herbáceos. As matas ciliares encontram-se relativamente degradadas ao longo do riacho Patos, sendo compostas por caatinga arbustiva, observando-se a presença de áreas antropizadas esparsas, compostas por plantios agrícolas e campos de macegas. Nos demais eixos de drenagem as matas ciliares apresentam-se relativamente preservadas. A área a ser desmatada abrange cerca de 27,00 ha. A fauna apresenta-se pouco representativa, sendo composta basicamente por pequenos mamíferos, aves e répteis, os quais apresentam-se pouco diversificados.

Não foi constatada a ocorrência de endemismo na composição da vegetação ou da fauna, e as áreas previstas para as obras, bem como a bacia hidráulica do reservatório não estão locadas em território de unidades de conservação, nem irão resultar em pressão antrópica sobre estas áreas. Com efeito, a unidade de conservação situada mais próximo da área do barramento, representada pela Floresta Nacional do Araripe, dista cerca de 10,0 km da área da bacia hidráulica da Barragem Patos, estando situada na região da Chapada do Araripe, acima da cota 500 m.

A fauna expulsa da área do projeto pela operação de desmatamento migrará para a região periférica passando a competir com a fauna aí existente em termos territoriais e alimentares. Haverá êxodo de animais peçonhentos e o afastamento de algumas espécies de pássaros provocará o incremento nas populações de insetos, inclusive os vetores de moléstias e os predadores da agricultura. A turbidez gerada pelo carreamento de sólidos para o leito dos cursos d'água perturbará os hábitos da ictiofauna.

Durante a implantação das obras os impactos incidentes sobre o bioma decorrem principalmente dos cortes, aterros e escavações necessários e da exploração de jazidas de empréstimo. Os principais danos decorrentes destas atividades serão a perda do patrimônio florístico e expulsão da fauna, a exemplo do que foi descrito anteriormente, só que numa escala relativamente inferior.

A construção de estradas de serviços cortando os caminhos preferenciais da fauna terrestre, irá expô-la, bem como as aves ao contato humano, incentivando a prática da caça predatória e aumentando os riscos de atropelamentos. Além disso, a fauna terá seus hábitos alterados devido a grande movimentação de máquinas e veículos pesados e ao uso de explosivos durante a exploração de pedreira, dado os elevados níveis de ruídos gerados.

A interrupção temporária do fluxo d'água na calha do riacho Patos, durante a implantação das obras prejudicará a ictiofauna. Além disso, a presença física do barramento provocará a interrupção do fenômeno da piracema (migração dos peixes para as cabeceiras dos rios no período de desova), com extinção de algumas espécies.

Haverá, ainda, os desmatamentos relativos a relocação de parte das residências para as áreas remanescentes das propriedades ou da construção da agrovila destinada ao reassentamento das famílias desalojadas, caso a sua implementação se faça necessária.

Em contrapartida, com a formação do reservatório será criado um habitat permanente para a fauna aquática, muito embora algumas espécies não se adaptem a alteração do regime hídrico de lótico para lêntico. Além disso, o fornecimento de vazão regularizada para a área de jusante permitirá a renovação periódica das águas represadas na Barragem Patos, preservando a sua qualidade e beneficiando de forma indireta o bioma aquático.

5.3.3 - Impactos sobre o Meio Antrópico

Durante a execução da pesquisa de campo, houve a difusão da notícia de que seria construído na região um reservatório para abastecimento da cidade de Nova Olinda e dos distritos de Patos, Mamão e Taboleiro do Bonito, bem como para o suprimento da população ribeirinha de jusante e para a dessedentação animal. Tal notícia impactou de forma benéfica à população que tinha como anseio poder contar com uma fonte hídrica permanente suprindo a carência hídrica da região. Observou-se ainda um certo receio de não receber indenizações justas e em tempo hábil.

Quanto à desapropriação de terras e conseqüente mobilização de um contingente populacional para fora da área. No caso do projeto ora em pauta, estes efeitos serão pouco significativos, uma vez que resultará na relocação de apenas 70 pessoas distribuídas em 15 famílias, o que pode ser considerado pouco expressivo. Além disso, uma parcela desta população poderá continuar residindo em áreas remanescentes das propriedades que serão apenas parcialmente atingidas. Com efeito, os 14 imóveis que terão suas áreas total ou parcialmente submersas pelo reservatório, perfazem uma área total de 165,71 ha, não estando aí incusas as áreas de quatro propriedades. Como a área da bacia hidráulica da Barragem Patos perfaz apenas 36,00 ha, pode-se afirmar que algumas propriedades contarão com áreas remanescentes.

Embora com a formação do lago o povoado de Patos tenha cinco de suas habitações englobadas pela faixa de proteção do reservatório, dado o pequeno porte apresentado por este (60 habitações), não se prevê a relocação deste núcleo urbano, devendo as habitações aí existentes serem apenas contempladas com sistema de saneamento básico centrado no uso de fossas sépticas.

A SRH ainda não se posicionou quanto à medida a ser adotada para o reassentamento das famílias desalojadas, entretanto tendo em vista que alguns imóveis imóveis atingidos terão áreas remanescentes, sugere-se a adoção do sistema de permuta, ou seja, casa por casa. Para as famílias que não se enquadrarem nesta situação devem ser estudadas outras soluções, envolvendo desde o reassentamento a jusante ou a montante do reservatório, até o reassentamento em núcleos urbanos próximos e a compensação monetária, sempre em comum acordo com a preferência do indivíduo atingido.

Haverá abalos ou até mesmo ruptura de relações familiares e sociais e é previsível a geração de tensão social face as incertezas criadas pelo processo desapropriatório, havendo o temor dos valores pagos pelas indenizações não serem compatíveis com os valores dos bens perdidos.

Além disso, o reassentamento da população devido envolver questões emocionais e de ordem cultural, embora seja efetuado dentro das normas técnicas pode não satisfazer as expectativas da população alvo, a qual pode não se adaptar ao novo modo de vida. Desta forma, o índice de indefinições é relativamente alto para o meio antrópico da área da área de influência física do empreendimento.

Quanto às atividades econômicas paralisadas, centradas na agricultura de subsistência e na pecuária extensiva, estas são pouco significativas, dado à escassez de recursos hídricos na região e ao fato de boa parte dos solos da área apresentarem restrições ao uso agrícola. A infra-estrutura privada abandonada será de pouca monta, estando restrita a habitações, estábulos, currais e cercas. Não haverá desemprego significativo da mão-de-obra, uma vez que uma parcela da população pode continuar explorando o restante de suas terras. Com relação às infra-estruturas de uso público atingidas, estas se encontram restritas a trechos de rede elétrica de baixa tensão e de um trecho de cerca de 500m de uma estrada de serviço da CHESF - Companhia Hidréletrica do Vale do São Francisco, que permite a manutenção da linha de alta tensão Crato - Nova Olinda.

Além da infra-estrutura de uso público acima discriminada, também serão motivo de impedimentos temporários ou mesmo de remoção/relocação, trechos de estradas vicinais que permitem o acesso às propriedades rurais e localidades da região.

Durante a implantação das obras, a cidade de Nova Olinda e Santana do Cariri, localizadas nas proximidades da área do projeto, terão suas funções econômicas e sociais sensivelmente alteradas pelo início dos trabalhos e, em particular, pelo aparecimento da nova comunidade operária. Dado a proximidade da área do empreendimento dos núcleos urbanos de Crato e Juazeiro do Norte, centros polarizadores da economia da região, é muito provável que o contingente obreiro exerça um aumento na demanda de bens e serviços destes núcleos urbanos, entretanto dado o grande porte apresentado por estes, os impactos decorrentes desta ação só serão sentidos em áreas localizadas. Do conjunto de impactos que surgem desse contato, pode-se prever os seguintes:

Geração de mini-inflação: com a chegada do contingente obreiro, haverá um aumento da demanda por bens e serviços na região. Como a oferta dificilmente irá aumentar na proporção necessária, pode-se prever uma elevação dos preços que, em alguns casos pode chegar a ser bastante significativa. Os principais prejudicados por este processo inflacionário serão os habitantes locais, cujas rendas não acompanham estes aumentos de preços. O contingente obreiro, por sua vez, tem remunerações normalmente superiores à média regional, estando assim mais imunes à carestia. Além disso, em torno do canteiro de obras geralmente surge um setor informal dedicado as atividades terciárias diversas, que interferem na disponibilidade de bens e serviços, aumentando sua

oferta e sua demanda como consumidor. Como consequência, este setor tem um papel importante, ainda que dúbio, sobre a geração da mini-inflação regional;

- Provável ocorrência de choques culturais entre os costumes nativos e os dos recém-chegados, com reflexos sobre as relações familiares e sociais;
- Pressão sobre a infra-estrutura existente: o aporte do contingente obreiro gerado pelo empreendimento criará pressão de demanda sobre o conjunto de serviços públicos existentes, dimensionados apenas para o atendimento da população local;
- Mercado de trabalho: dada a sua magnitude, o empreendimento irá interferir no mercado de trabalho da região, através da oferta de um elevado número de empregos para mão-de-obra não qualificada (cerca de 150 empregos). A oferta de empregos com salários superiores aos vigentes na região provocará a evasão da mão-de-obra dos setores produtivos tradicionais. Entretanto estes impactos não serão tão relevantes, já que a região conta com um grande contingente de mão-de-obra desempregada, se caracterizando como expulsadora de mão-de-obra;
- Economia regional: haverá também efeitos indiretos da obra sobre a economia regional, tanto devido aos gastos com pagamentos de salários, quanto a aquisição de material de construção, explosivos e gêneros alimentícios para a alimentação dos trabalhadores engajados na obra, entre outros.

A construção de vias de serviços e a manutenção da malha viária existente, facilitará o deslocamento e pessoas e o escoamento da produção agrícola, com reflexos positivos sobre a opinião pública. Além disso, o reservatório servirá de hidrovia, facilitando o deslocamento através de um meio de transporte mais econômico.

Os problemas de saúde associados à implantação do empreendimento não constituem, em essência, problemas particularmente diferentes daqueles que atingem uma dada comunidade. No entanto, fatores tais como grandes agrupamentos de operários numa área específica e uma cronologia rígida, que obriga uma sincronização de atividades, marcando o ritmo de todo o processo, são responsáveis pela maior incidência de impactos negativos sobre saúde, visto que:

- Há possibilidade de proliferação de doenças trazidas pelo contingente obreiro radicado no canteiro de obras, ou atraído pelas obras e fixado nos núcleos urbanos da região e favorecidas pelas novas condições sanitárias agravadas com o aumento da população;
- O intenso tráfego de máquinas e caminhões pesados aumentará os riscos de acidentes envolvendo a população;
- Riscos de desmoronamentos dos taludes de valas durante as explorações das jazidas de material terroso e areia, dado a estrutura pouco coesa do terreno;
- Riscos de acidentes com explosivos durante a exploração de pedreira.

Além dos problemas de saúde acima mencionados, durante o desmatamento da bacia hidráulica do reservatório aumentam os riscos de acidentes envolvendo animais peçonhentos, tanto para os trabalhadores engajados nesta atividade, como para a população periférica. Assim sendo, durante a implantação das obras é previsível a ocorrência de pressão sobre a infra-estrutura do setor saúde regional, dimensionado apenas para o atendimento da população nativa.

Haverá ainda transtornos causados ao tráfego de veículos e empecilhos criados ao deslocamento de pedestres, por ocasião da relocação de trechos de rodovias vicinais que permitem o acesso a propriedades rurais da região e pequenos povoados. Tais impactos podem ser contornados com a implementação de desvios de tráfego temporários. Estes trechos devem ser alvo de intensa sinalização, sendo para tanto contactado o órgão competente.

Com a implementação do desmatamento da área das obras é previsto, além da geração de empregos diretos, o surgimento de diversas oportunidades de empregos indiretos através do aproveitamento dos subprodutos dos desmatamentos (lenha, carvoaria, etc.), beneficiando o setor terciário.

Os riscos de dilapidação do patrimônio arqueológico, embora não sejam tão tão relevantes quanto os do patrimônio paleontológico, deverão ser levados em consideração, uma vez que a região do Cariri conta com sítios arqueológicos identificados nos municípios de Lavras da Mangabeira (esqueletos humanos) e Campos Sales (litícos polidos), denotando a passagem de indígenas e/ou homens pré-históricos pela região. Assim sendo, deverá ser implementada a realização de estudos mais acurados antes do início das obras, inclusive com a execução de prospecções arqueológicas caso se faça necessário.

Com o término das obras haverá desemprego da mão-de-obra engajada no empreendimento, além do desaquecimento da economia local, com reflexos negativos sobre o nível de renda, o que contribuirá para a geração de tensão social. Os trabalhadores e a população da região devem ser alertados, desde o início da implementação do projeto, sobre o caráter temporário dos empregos ofertados e das atividades desenvolvidas.

Com o início da operação do reservatório, haverá um impulso no desenvolvimento do setor primário da região, através do desenvolvimento da irrigação difusa nas áreas ribeirinhas pela iniciativa privada decorrente da perenização do riacho Patos, permitirá ao homem rural auferir rendas superiores às obtidas na agricultura de sequeiro, o que terá reflexos positivos sobre a arrecadação tributária.

Haverá, ainda, o desenvolvimento da piscicultura extensiva com o peixamento do reservatório pelo órgão empreendedor e conseqüente formação de colônias de pescadores no lago a ser formado, e a dessedentação animal.

O empreendimento ora em análise garantirá ainda o reforço ao abastecimento d'água humano e industrial da cidade de Nova Olinda e dos distritos de Patos, Mamão e Taboleiro do Bonito, beneficiando no ano de 2030, horizonte do projeto, uma população urbana da ordem de 1.648 habitantes, além da

população ribeirinha de jusante. Com a garantia de um fornecimento d'água regularizado haverá incentivo ao desenvolvimento dos setores industrial e de comércio e serviços da cidade de Nova Olinda.

O fornecimento d'água regularizado elevará os padrões de higiene da população, além de permitir o consumo de água de boa qualidade. Tudo isso impactará de forma benéfica à saúde da população e consequentemente o próprio setor saúde, pois são bastante representativos os números de casos de doenças de veiculação hídrica por ingestão de água contaminada na região, com os municípios de Crato, Juazeiro do Norte, Barbalha, Missão Velha e Caririaçu, situados vizinhos a Nova Olinda, integrando uma área considerada focal para transmissão de esquistossomose, sendo o controle desta doença na região efetuado pela Secretaria de Saúde estadual e pela FUNASA - Fundação Nacional de Saúde.

Com relação à ocupação da mão-de-obra, haverá um aumento na oferta de empregos estáveis, tornando as relações de produção mais humanas e o modo de vida da população mais estruturado, dado o desenvolvimento da irrigação difusa pela iniciativa privada e dos setores industrial e de comércio e serviços na cidade de Nova Olinda.

A operação e manutenção da infra-estrutura do reservatório demandarão serviços que geram uma oferta adicional de oportunidades de empregos permanentes. O aumento da renda do homem rural, por sua vez, propiciará uma maior demanda de bens e serviços de consumo que dinamizará as atividades econômicas dos centros urbanos próximos. Tudo isso resultará na redução dos problemas sócio-econômicos decorrentes do fenômeno das secas, dado a fixação do homem no campo.

6 - PLANOS DE MEDIDAS MITIGADORAS E/OU COMPENSATÓRIAS

6 - PLANOS DE MEDIDAS MITIGADORAS E/OU COMPENSATÓRIAS

6.1 - GENERALIDADES

O melhor aproveitamento dos impactos benéficos e a mitigação ou a absorção de impactos adversos decorrentes da implementação do empreendimento, somente serão possíveis mediante a adoção de medidas de proteção ambiental preconizadas a seguir. Os planos aqui apresentados compreendem diretrizes gerais, devendo ser posteriormente convertidos em projetos específicos, adequados a realidade local.

Ficará a cargo do empreendedor a elaboração e implementação dos projetos aqui sugeridos, cabendo ao órgão ambiental competente, no caso a SEMACE, supervisionar todas as etapas de implantação dos projetos, assim como auxiliar na orientação dos serviços a serem executados.

6.2 - PLANO DE DESMATAMENTO ZONEADO DA BACIA HIDRÁULICA

O desmatamento zoneado da área a ser inundada objetiva, além do atendimento à legislação vigente, atingir as seguintes metas: limpeza da área da bacia hidráulica, tendo em vista a conservação da água represada; salvamento da fauna e sua condução para locais de refúgio; preservação da faixa de proteção do reservatório definida pela Resolução CONAMA n.º 004/85; aproveitamento dos recursos florestais gerados pelo desmatamento; proteção dos trabalhadores e da população circunvizinha contra o ataque de animais, principalmente os peçonhentos.

A Barragem Patos, ora em análise, deverá inundar uma área de 36,00 ha, cuja cobertura vegetal encontra-se composta predominantemente por vegetação de caatinga arbustiva densa, enquanto que as áreas de várzeas apresentam a vegetação nativa substituída por capeamentos gramíneos/herbáceos, capoeiras de caatinga de porte arbustivo e cultivos agrícolas. Cerca de 25% da cobertura vegetal da área da bacia hidráulica encontra-se degradada.

Para a concepção do projeto de desmatamento zoneado da área do reservatório deve ser elaborado, a princípio, um diagnóstico florístico e faunístico, visando, não só a identificação e caracterização destes recursos, como a verificação da necessidade de adoção de medidas que minimizem os impactos potenciais incidentes sobre estes, devendo ser executadas as seguintes tarefas: elaboração de perfis representativos de cada fácie vegetal identificada na área; elaboração de um mapa da composição florística da área da bacia hidráulica e cercanias, identificando as áreas de reservas ecológicas e zonas de refúgio para a fauna; identificação das espécies da fauna, definindo as espécies de maior importância ecológica no que diz respeito aos seus hábitos, fontes de nutrição, migrações e interações com o meio natural; identificação dos locais de pouso e reprodução de aves, de desova dos répteis, além de refúgios e caminhos preferenciais da fauna.

Antes que sejam iniciados os trabalhos de desmatamento, deverão ser estimuladas as atividades de pesquisa florística por entidades científicas e a coleta de material para a formação de um herbário. Em

Fortaleza existem duas instituições científicas que podem ser engajadas nesta atividade, o Herbário Prisco Viana da Universidade Federal do Ceará e o Herbário Afrânio Fernandes da Universidade Estadual do Ceará.

A área a ser desmatada encontra-se delimitada pela cota de máxima inundação (448,79m), ou seja, o desmatamento deve ser realizado apenas dentro da bacia hidráulica do reservatório. Ressalta-se, no entanto, que devem ser resguardadas áreas visando criar e posteriormente proteger o habitat paludícola/aquático para a ictiofauna e demais comunidades lacustres.

No caso específico da Barragem Patos as áreas a serem preservadas estão restritas à faixa de proteção do reservatório, conforme dita a Resolução CONAMA n.º 004/85. Assim sendo, deve ser desapropriada pela SRH uma faixa marginal de 100 m, horizontalmente medidos da cota de máxima inundação, a qual será destinada à faixa de proteção do reservatório. Esta área serve de barreira ao aporte de sedimentos e agentes poluentes, bem como de reserva vital à recuperação e/ou melhoria do sistema natural da área de influência do reservatório.

Quanto às técnicas de desmatamento, a área a ser englobada pela bacia hidráulica do reservatório apresenta solos rasos a medianamente profundos, com ocorrência de afloramentos rochosos, relevo suave ondulado a forte ondulado e densidade vegetacional média a densa nas áreas de matas e capoeiras. Logo, pelas suas características, é possível prever a necessidade da utilização dos métodos manual e mecânico. Nas operações de desmatamento e destoca, através do método mecânico, deverão ser utilizados tratores de esteiras com potência variando de 120 a 150 Hp, equipados com lâminas do tipo frontal reta-S, cujo rendimento aproximado é de 1,0 ha/hora. Nas operações de enleiramento, para que não ocorra o carreamento de terra juntamente com os restolhos, devem ser usados tratores de esteiras equipados com ancinhos enleiradores.

O desmatamento deve ser iniciado a partir do barramento em direção à montante, de forma a possibilitar um espaço de tempo necessário à fuga da ornitofauna e da fauna terrestre de maior mobilidade. Recomenda-se a execução do desmatamento durante o período de estiagem, dado a maior disponibilidade de mão-de-obra na região, principalmente, no caso de adoção do método manual.

À medida que as frentes de serviços forem avançando, deverão ser formados corredores de escape, que permitam a fuga da fauna para áreas de refúgio. Os corredores de escape constituem faixas de vegetação preservadas da ação antrópica, que permitem a interligação entre as áreas a serem desmatadas e as reservas ecológicas, cujas dimensões fixadas devem ser respeitadas, só devendo ser eliminados após a conclusão dos trabalhos de desmatamento nas diversas áreas. A largura dos corredores de escape deve ser de no mínimo 15 m, facilitando assim o livre trânsito da fauna de maior porte e mais arisca. De modo a permitir uma melhor acomodação da fauna, os corredores de escape deverão, também, fazer a interligação entre reservas ecológicas.

A população nativa e os próprios trabalhadores devem ser alertados para o fato dos corredores de escape constituírem áreas proibidas ao trânsito de pessoas, pois os animais acuados poderão provocar

acidentes. Além disso, deve ser estabelecida uma fiscalização que proíba a caça durante os trabalhos de desmatamentos.

Os recursos florestais da área contam com espécies de valor econômico e/ou medicinal, além daquelas fornecedoras de madeira e lenha. Com exceção das espécies destinadas a exploração da lenha, as demais espécies apresentam-se esparsamente distribuídas na área a ser desmatada. Para um melhor aproveitamento da madeira devem ser adotadas as seguintes recomendações:

- Concessão de franquia à população para a exploração da lenha e de tipos vegetais úteis à medicina caseira, proporcionando assim um estímulo ao replantio;
- Coordenação dos órgãos públicos envolvidos no sentido de orientar a população quanto às formas de acondicionamento e os melhores usos, segundo os vários tipos de vegetais;
- Acondicionamento de espécies vegetais raras em bancos de germoplasma para posterior replantio na área da faixa de proteção do reservatório.

A quantificação do estoque madeireiro existente na área a ser desmatada deverá ser efetuada através de amostragem aleatória de blocos com dimensões 10 m x 10m, dentro dos quais serão avaliados os seguintes parâmetros: diâmetro da altura do peito (DAP) de cada espécie; DAP médio de cada bloco; altura média (H) de cada espécie e dos blocos; volume médio (V) das árvores de cada bloco; fator de empilhamento (Fe) de cada bloco. Os valores obtidos são importantes para a análise do crescimento vegetal, bem como para a comercialização do estoque madeireiro.

A execução do desmatamento demandará um período de 5 dias, tendo como base o rendimento do método mecânico com 2 tratores de 120 HP (1 ha/hora cada trator), sendo efetivado próximo ao início do enchimento do reservatório. Tal medida deverá ser executada pela Empreiteira, sob a fiscalização da SRH, da SEMACE e do IBAMA. Os custos a serem incorridos com o desmatamento zoneado da área da bacia hidráulica do reservatório já foram previstos pela Projetista, estando incluso no orçamento das obras da barragem.

6.3 - PLANO DE PROTEÇÃO E MANEJO DA FAUNA

Os impactos incidentes sobre a fauna, dada a erradicação do seu habitat natural durante os trabalhos de desmatamento, podem ser minimizados através de sua transferência para as áreas de reservas ecológicas. A implementação de corredores de escape, durante as operações de desmatamento, permitirá a fuga da fauna que ainda permanecer na área do reservatório para as zonas de refúgio. No entanto, alguns animais que tiverem retornado ao seu antigo habitat, precisarão ser capturados para posterior soltura nas reservas.

O manejo da fauna deverá ser executado por equipe técnica especializada, contratada pelo órgão empreendedor do projeto, podendo ser engajado nesta atividade as seguintes instituições de pesquisa: Núcleo de Ensino e Pesquisa em Ciência (NEPC), Centro de Ciência e Tecnologia (CCT), ambos

vinculados à universidade Estadual do Ceará (UECE), Departamento de Biologia e Laboratório Regional de Ofiologia de Fortaleza (LAROF), pertencentes à Universidade Federal do Ceará.

Na captura, acondicionamento e transporte da fauna devem ser seguidas determinadas normas, de acordo com as particularidades de cada espécie animal. Assim sendo, mamíferos, que na região são, em geral, de pequeno e médio porte, com várias espécies arredias, devem ser desentocados com o uso de varas compridas e/ou fumaça, e aprisionados através de redes para posterior acondicionamento em caixas apropriadas.

Parte da entomofauna, aqui representada por vespas e abelhas devem ter seus ninhos transferidos para árvores localizadas nas zonas de refúgio da fauna. Já as aranhas e outros invertebrados deverão ser capturados com pinças e colocados em vidro de boca larga com tampa rosqueada.

Tendo em vista que a época de procriação de uma parcela representativa da ornitofauna coincide com a estação das chuvas, recomenda-se que o desmatamento seja executado durante o período de estiagem, quando ocorrem poucas espécies nidificando, evitando-se assim a destruição de ninhos e ovos. Os métodos de captura mais aconselhados para pássaros são alçapão com chamariz e a rede de neblina com quatro bolsas, sendo o transporte feito em sacos de algodão.

Quanto aos répteis, as serpentes deverão ser capturadas com o uso de laço ou de ganchos apropriados e acondicionadas em caixas especiais. As serpentes capturadas deverão ser enviadas vivas para o LAROF. Pequenos lagartos e anfíbios deverão ser coletados com as mãos e transportados em sacos de pano.

As caixas destinadas ao acondicionamento e transporte de animais, deverão oferecer segurança contra fuga e traumatismo, ventilação adequada e facilidade de transporte. Deve-se evitar a ocorrência de superlotação, sob a pena de acelerar o processo de "estresse" dos animais, bem como a colocação de animais com incompatibilidade inter/intra-específica (predador x presa) numa mesma caixa.

Os animais seriamente debilitados e que tenham comprometida a sua sobrevivência, e os que, porventura, morrerem durante a operação de desmatamento ou resgate deverão ser enviados vivos ou mortos para instituições de pesquisa em Fortaleza, onde serão incorporados à coleções científicas, tornando-se registros da fauna da região.

Durante a operação de desmatamento os trabalhadores e a comunidade local ficarão expostos a acidentes com mamíferos, animais peçonhentos (serpentes, aranhas, escorpiões e lacraias), abelhas e vespas. Assim sendo, medidas que previnam estes acidentes deverão ser adotadas durante a execução dos trabalhos.

A equipe engajada no resgate da fauna deverá receber treinamento sobre identificação e técnicas de capturas de animais, especialmente dos peçonhentos, além de estarem adequadamente trajados com

botas e luvas de cano longo feitas de couro ou de outro material resistente. Deverão compor a equipe, indivíduos treinados na prestação de primeiros socorros.

Os responsáveis pelas operações de desmatamento e de manejo da fauna deverão, antes do início desta última atividade, manter contato com os postos de saúde da região, certificando-se da existência de pessoal treinado no tratamento de acidentes ofídicos, bem como de estoque de soros dos tipos antiofídicos e outros. Deverá, ainda, ser divulgado junto à população local, as principais medidas de prevenção de acidentes com animais peçonhentos através da distribuição de cartilhas.

A remoção de colméias e vespeiros deverá ser feita por pessoal especializado e devidamente equipado, sendo posteriormente transferidos para as áreas de reservas ecológicas.

Caso ocorra acidentes com cobras, devem ser tomadas as medidas de primeiros socorros recomendadas para estes casos, até que haja atendimento médico adequado. A serpente agressora deve ser capturada para que possa ser identificado com mais segurança o tipo de soro a ser ministrado.

Já na ocorrência de acidentes envolvendo mamíferos silvestres, deve-se manter o animal agressor em cativeiro pelo período de 10 dias, visando detectar uma possível contaminação pelo vírus da raiva. Caso o animal apresente os sintomas da doença, o trabalhador agredido deverá ser submetido imediatamente a tratamento anti-rábico e o animal deve ser sacrificado e cremado.

O resgate da fauna deve ser iniciado com uma semana de antecedência do desmatamento, passando, em seguida, os dois processos a serem executados de forma concomitante. O manejo da fauna da área da bacia hidráulica da Barragem Patos poderá ser realizado em cerca de 3 dias, utilizando-se uma equipe de 30 homens trabalhando 8 horas/dia para o preparo de 15 ha para captura. O custo total estimado para esta atividade é de R\$ 2.130,00, valor expresso em reais de maio de 2002.

6.4 - PLANO DE RECUPERAÇÃO DAS ÁREAS DE JAZIDAS DE EMPRÉSTIMOS, BOTA-FORAS E CANTEIRO DE OBRAS

6.4.1 - Generalidades

As áreas de exploração de material de empréstimos, bem como as áreas destinadas ao canteiro de obras e aos bota-foras sofrerão alterações da paisagem natural, com comprometimento da cobertura vegetal, da fertilidade dos solos e da topografia original, além do desencadeamento de processos erosivos com conseqüente assoreamento dos cursos d'água, e da geração de poeiras e ruídos provocados por máquinas e veículos pesados e pelo uso de explosivos.

Desta forma, faz-se necessário à implementação de projetos de recomposição paisagística das áreas degradadas. Ressalta-se, no entanto, que o cuidado com as áreas potencialmente degradáveis deve ser observado desde as primeiras etapas da implementação do empreendimento, com a empreiteira incorporando no processo construtivo, medidas tais como: redução dos desmatamentos operacionais ao mínimo necessário, disposição adequada dos resíduos sólidos do canteiro de obras, dotação de infra-

estrutura de esgotamento sanitário no canteiro de obras (fossas sépticas) e campanhas de esclarecimentos junto aos trabalhadores sobre a prevenção de doenças de veiculação hídrica, entre outras.

6.4.2 - Reabilitação das Áreas de Jazidas de Empréstimos

Os recursos minerais a serem explorados para utilização nas obras da Barragem Patos são enquadrados na Classe II do Código de Mineração, sendo compostos, basicamente, por materiais terrosos, granulares e pétreos. Para obtenção do material terroso foi indicado o desenvolvimento de estudos em terras altas, posicionadas fora da área da bacia hidráulica do reservatório, devendo estas áreas serem alvo de reconstituição paisagística após o abandono da lavra. O areal encontra-se posicionado no leito do rio Cariús, ou eventualmente no próprio leito do riacho Patos, a montante do eixo do barramento, enquanto que o material pétreo poderá ser obtido de ocorrências de arenito aflorante existentes dentro da área da bacia hidráulica do futuro reservatório e das escavações do vertedouro.

As atividades desenvolvidas na fase de implantação da lavra, tais como, abertura de vias de acesso, seleção de áreas para deposição de expurgos e decapeamento (remoção da camada de solo vegetal), devem obedecer determinadas normas sob pena de degradar o meio ambiente.

Deste modo, recomenda-se o aproveitamento das estradas vicinais existentes, sendo construídas apenas as vias de serviços imprescindíveis; a redução dos desmatamentos ao mínimo necessário; a umidificação das vias e a estocagem do solo vegetal retirado. Além disso, o percurso traçado para as vias de serviços deve evitar, ao máximo, atravessar áreas de reservas ecológicas.

Na operação de decapeamento, a camada de solo fértil deve, logo após o desmatamento, ser empilhada por trator de esteira e carregada em caminhões para as áreas de bota-foras, onde não haja incidência de luz solar direta, visando assim evitar a germinação das sementes que se encontram em estado de "dormência".

Durante a operação das lavras devem ser obedecidas algumas regras relativas ao uso de explosivos, transporte, sinalização, estocagem e tratamento das áreas mineradas. Durante a exploração da pedreira, caso esta se situe próximo de habitações ou rodovias, devem ser atendidas as seguintes exigências:

- Detonações limitadas a horários pré-determinados, os quais devem ser notificados à população, e estabelecimento prévio de um perímetro de segurança;
- A emissão de vibrações no solo e no ar provocadas pelas detonações deve ficar dentro dos valores toleráveis, a serem estabelecidos pelos órgãos competentes;
- Reduzir ao máximo o ruído, a fumaça, e a poeira geradas pelas detonações, através do uso de tecnologias avançadas;

 Evitar o ultralançamento de fragmentos fora do perímetro de segurança na execução das detonações, no planejamento das frentes de lavra e na escolha dos locais para o fogacho, entre outras.

No carregamento e transporte dos materiais de empréstimos e rejeitos, deve-se fazer uma otimização dos caminhos, de modo a reduzir a poluição da região circunvizinha por detritos e poeiras, e adotar o uso de sinalização de trânsito adequada para diminuir os riscos de acidentes. Na exploração das jazidas deve-se considerar, também, as condições geológicas, topográficas e hidrológicas das áreas de lavra, diminuindo assim os riscos de inundações e de deslizamentos de encostas.

Visando reduzir ao mínimo o aporte de sedimentos às áreas circunvizinhas às jazidas, deverão ser implantados sistemas de drenagem antes do início da lavra. Desta forma, todos os sistemas de encostas e toda a área minerada deverão ser protegidos através do desvio das águas pluviais por meio de canaletas.

O avanço das frentes de lavra poderá provocar, em alguns setores das jazidas de materiais terrosos e granulares, instabilidades das encostas marginais com riscos de desmoronamentos e desencadeamentos de processos erosivos. Diante disso, é recomendável a reconstituição topográfica dos taludes mais íngremes e o estabelecimento de programas de reflorestamento com espécies vegetais adaptadas à região.

Quanto à estocagem de materiais de empréstimos, deve-se evitar ao máximo a adoção deste procedimento, coordenando a sua utilização nas obras, concomitantemente com a sua exploração.

Durante a exploração das jazidas são produzidas grandes quantidades de rejeitos sólidos, os quais deverão ser depositados próximo à área de lavra, em cotas inferiores à da mineração, reduzindo assim os custos com transportes. Nunca devem ser colocadas pilhas próximas ao limite do "pit", pois haverá uma sobrecarga nos taludes finais da cava, podendo ocorrer desmoronamentos.

As pilhas de rejeitos constituídos por materiais não-coesivos devem ser formados por basculhamento direto do terreno, sem compactação, e devem apresentar um ângulo de face de 37°, que é o próprio ângulo de repouso do material. Para os materiais coesivos, a inclinação dos taludes e as alturas permitidas são determinadas por testes de estabilidade.

Para a estabilização dos rejeitos no caso específico da Barragem Patos, deve ser adotado o método botânico, pois a região dispõe de material que serve de cobertura de solo. Para que haja um pronto restabelecimento da cobertura vegetal nas bermas de rejeitos, devem ser usadas técnicas que aumentem a fertilidade dos solos, associado ao uso de sementes selecionadas.

Após o abandono das áreas de lavra, deverão ser iniciados os trabalhos de reconstituição paisagística das jazidas de materiais terrosos e granulares localizadas fora da bacia hidráulica, através da

regularização da superfície topográfica, espalhamento do solo vegetal e posterior reflorestamento com vegetação nativa.

O solo vegetal deve ser depositado em camadas finas, de modo a evitar a necessidade de futuras importações de solos de outras regiões, utilizando tratores de esteira, caminhões basculantes e pás carregadeiras. Em seguida devem ser efetuadas adubações e correções do solo, de acordo com os resultados de análises químicas.

O reflorestamento deve ser efetuado, logo após a recomposição do solo, sendo o plantio executado preferencialmente por hidro-semeadura (aspersão de pasta formada pela mistura de sementes, fibras de madeira, adesivo resinoso, fertilizantes e água) ou pelo plantio de mudas.

Quanto à pedreira, deve-se cercar a área a ser utilizada, especialmente eventuais buracos surgidos durante a lavra, a fim de evitar acidentes envolvendo animais ou pessoas durante a sua exploração.

6.4.3 - Disposição Adequada da Infra-estrutura e Recomposição da Área do Canteiro de Obras.

As degradações impostas ao meio ambiente pela implantação e operação do canteiro de obras envolvem danos à flora, deterioração pontual dos solos, desencadeamento de processos erosivos e de assoreamento dos cursos d'água e redução na recarga dos aqüíferos. Além disso, ocorre geração de poeira e ruídos provocados pelos desmatamentos e terraplenagens, e pela operação da usina de concreto. Deste modo, faz-se necessário a adoção das seguintes medidas:

- Reduzir os desmatamentos ao mínimo necessário;
- Na instalação da usina de concreto e da central de britagem, levar em conta a direção dos ventos dominantes, no caso do canteiro de obras se situar próximo a áreas habitadas;
- Adotar o uso de fossas sépticas como infra-estrutura de esgotamento sanitário, procurando localizálas distante dos cursos d'água;
- Resíduos de concretos e outros materiais devem ser depositados em locais apropriados, sendo submetidos a tratamento adequado;
- Umidificar o trajeto de máquinas e veículos;
- Construir os paióis de armazenamento de explosivos em terrenos firmes, secos, livres de inundações, de mudanças freqüentes de temperatura e ventos fortes. Deve ser mantida uma faixa de terreno limpo com largura de 20 metros em torno dos paióis;
- Armazenagem de pólvora, dinamites e estopins em depósitos separados e desprovidos de instalações elétricas.

Após a conclusão das obras, caso as instalações do canteiro de obras não sejam aproveitadas para o monitoramento do reservatório, a área por este ocupada deve ser alvo de reconstituição paisagística, através do reflorestamento com espécies vegetais nativas. Já o tratamento a ser dado às áreas dos caminhos de serviços, consiste em espalhar o solo fértil estocado por ocasião de suas construções, regularizar o terreno e reflorestar com espécies nativas.

Os custos a serem incorridos na recuperação de 1 ha (um hectare) de área degradada foram estimados em R\$ 500,00 (valor expresso em reais de maio de 2.002). Após a definição das áreas de jazidas a serem exploradas deverá ser elaborado um plano de recomposição paisagística das áreas degradadas, o qual deverá ser submetido a aprovação da SEMACE. Esta atividade é de competência direta da Empreiteira, devendo a mesma ser fiscalizada pela SRH.

6.5 - PLANO DE REMOÇÃO/RELOCAÇÃO DA INFRA-ESTRUTURA

A Barragem Patos destina-se a usos múltiplos, tendo como principal finalidade o reforço no abastecimento d'água da cidade de Nova Olinda e dos distritos de Mamão, Patos e Taboleiro do Bonito, razão pela qual a preservação da qualidade das águas represadas assume primordial importância, sendo para tanto necessária a eliminação de fatores potencialmente poluentes existentes na área a ser inundada.

As edificações quando submersas constituem graves obstáculos à pesca, às atividades balneárias e à navegação, além de prejudicarem o processo de autodepuração dos reservatórios. A submersão de fossas, esgotos domésticos, pocilgas e currais, sem limpeza ou tratamento prévio, também, representam focos potenciais de poluição. Assim sendo, faz-se necessário a adoção de normas para a limpeza da área englobada pela bacia hidráulica, evitando que o processo de preservação da qualidade dos recursos hídricos represados seja dispendioso.

Os componentes da infra-estrutura privada existentes a serem removidos e/ou receberem tratamento adequado deverão ser quantificados a partir dos dados levantados pelo cadastro. Com base nos dados do cadastro e da pesquisa de campo, há necessidade de adoção das seguintes medidas:

- Demolição de todas as edificações e cercas, e remoção do entulho para fora das áreas a serem inundadas. O material reutilizável deve ser separado e os materiais restantes, não combustíveis, devem ser enterrados a uma profundidade mínima de um metro;
- As fossas devem ser esgotadas, sendo os líquidos transportados para outros locais. Tendo em vista a quase inexistência de fossas na área a ser inundada, o tratamento destes efluentes pode ser feito com a simples adição de cal hidratada e posterior aterramento com material argiloso;
- Os detritos de hortas, pocilgas, currais, etc., devem ser removidos para cavas abertas, contendo cal hidratada e em seguida recobertos com material argiloso;

- O lixo doméstico, quando combustível, deverá ser recolhido e incinerado, sendo o material resultante da queima, posteriormente enterrado em solo argiloso, de modo que o local fique impermeabilizado;
- Os trechos de redes elétricas de baixa tensão existentes na área devem ser desativados, sendo alvos de relocação sempre que se fizer necessário.

A remoção da infra-estrutura deverá ser executada à medida que os trabalhos de desmatamento forem avançando, fazendo uso sempre que possível da mão-de-obra local. Compete à Empreiteira os trabalhos de remoção da infra-estrutura existente na bacia hidráulica, devendo a SRH fiscalizar o andamento do serviço.

A maior parte da infra-estrutura a ser removida da área da bacia hidráulica do reservatório pertence a particulares, e será alvo de indenizações, não precisando portanto ser relocada. A infra-estrutura de uso público existente, que necessita ser relocada, atinge pouca monta, sendo representada apenas por um trecho de 500 m de uma estrada de serviços da CHESF, que permite a manutenção da rede elétrica Crato - Nova OLinda, trechos de estradas vicinais que permitem o acesso às propriedades rurais e pequenos povoados da região e trechos de rede elétrica de baixa tensão.

Na ocasião da remoção e posterior relocação da infra-estrutura de uso público da área da bacia hidráulica do reservatório, recomenda-se sejam firmados convênios com a Prefeitura Municipal de Nova Olinda, no caso das estradas vicinais, com a COELCE - Companhia de Eletricidade do Ceará (COELCE) no caso das redes elétricase com a CHESF, no caso da estrada de serviços.

Os custos incorridos com a limpeza da área da bacia hidráulica do reservatório foi estimado em R\$ 1.500,00,00 (valor expresso em reais de maio de 2002). Quanto ao cálculo dos custos a serem incorridos no processo de relocação das infra-estruturas de uso público, estes só poderão ser orçados após a definição dos trechos de rodovias vicinais e de redes elétricas de baixa tensão que realmente precisem ser relocados após o reassentamento da população desalojada da área do reservatório.

6.6 - PLANO DE PEIXAMENTO DO RESERVATÓRIO

O programa de peixamento proposto para a Barragem Patos contempla apenas a exploração da piscicultura extensiva, uma vez que a grande quantidade de matéria orgânica gerada pela piscicultura superintensiva (tanques-redes), torna o seu cultivo pouco recomendável em açudes cujas águas se destinam ao abastecimento humano.

Na piscicultura extensiva o povoamento inicial do reservatório deverá adotar inicialmente a adaptação das espécies nativas da bacia do rio Cariús às condições idênticas do lago formado. Posteriormente devem ser introduzidas espécies aclimatadas selecionadas, tendo em vista maior exploração de valor econômico. A escolha das espécies a serem introduzidas no açude deverá ser fiel aos seguintes critérios: ecológicos - posição na cadeia trófica, potencial reprodutivo, produtividade da biomassa, etc.; e

econômicos-culturais - facilidade de manejo, fonte protéica e energética, palatabilidade, boa aceitação comercial, etc.

Dentre as várias espécies propostas para o peixamento da Barragem Patos, citam-se: curimatã-comum (Prochilodus cearaensis), piau lavrado (Leporinus fasciatus fasciatus) e sardinha (Triportheus angulatus angulatus) entre as espécies nativas, e carpa comum (Cyprinus carpio), Tilápia do Nilo (Oreochromis niloticus), tilápia do Congo (Tilapia rendalli), Tambaqui (Colossoma macropomum), piau verdadeiro (Leporinus elongatus), apaiari (Astronotus ocellatus ocellatus) e pescada do Piauí (Plagioscion squamosissimus), entre as climatizadas.

Deve-se dar ênfase, ainda, a espécies que consomem caramujos (apaiari, tambaqui, tilápias do Nilo e do Congo e piau verdadeiro), pois estas contribuem para controlar o caramujo hospedeiro intermediário do vetor da esquistossomose. Não deve ser adotado no peixamento do reservatório o uso das espécies de tucunarés ocorrentes no Estado do Ceará, a não ser com o objetivo de competir com a piranha e a pirambeba.

A primeira etapa do programa de peixamento da Barragem Patos deve compreender a formação de estoque de matrizes e reprodutores. A duração prevista dessa etapa é de aproximadamente 2 anos. No povoamento inicial deverão ser utilizados alevinos de espécies que se reproduzam naturalmente e espécies reofílicas, que se reproduzem artificialmente. Além destes, convém acrescentar exemplares de camarão canela, os quais completarão o povoamento do açude.

A segunda etapa consiste no repovoamento com espécies que não se reproduzem no reservatório. Realizado a cada 2 anos, o repovoamento deverá constar da adição de alevinos de carpa comum, tambaqui, piau verdadeiro, entre outros. Algumas espécies poderão requerer repovoamento dependendo do grau de depleção das mesmas. Caso seja necessário, recomenda-se utilizar o mesmo número de alevinos do povoamento inicial.

De acordo com pesquisas realizadas em vários açudes públicos de porte similar a Barragem Patos açude Figueiredo, um programa de alevinagem bem conduzido, pode levar à captura de aproximadamente 250 kg/ha/ano de pescado, no oitavo ano após o enchimento do reservatório.

À SRH caberá implantar a administração dos recursos pesqueiros do açude, onde vigorarão as leis e normas referentes à regulamentação da pesca em águas interiores, com vistas à proteção da ictiofauna. A proibição da pesca na época das cheias, quando ocorre o fenômeno da piracema, e o controle do tamanho da malha da rede de espera, constituem umas das principais normas disciplinares a serem seguidas na área.

O empreendedor deve estimular a população ribeirinha, à prática pesqueira incentivando, inclusive, a criação de um clube de pesca ou cooperativa de pesca que poderá ter as seguintes atribuições: comercialização; regulamentação e fiscalização da pesca no reservatório; promoção de cursos de

treinamento e campanhas de conscientização sobre a importância deste tipo de uso do açude, entre outras.

O programa de peixamento do açude deverá ser iniciado logo que se complete o enchimento do lago, devendo em 4 (quatro) anos, no mínimo, estar em plena operação. A pesca comercial, no entanto, poderá ser iniciada 1 (um) ano após o enchimento do açude. Estima-se que com essa atividade, sejam criadas 40 novas oportunidades de emprego para pescadores e mais 80 empregos indiretos.

Os investimentos na atividade pesqueira do açude, bem como a receita gerada na ocasião da estabilização do programa de peixamento deverá ser devidamente quantificada em projeto específico, cuja elaboração deverá ser contratada pela SRH. Estimativas efetuadas pelo Consórcio HIDROSTUDIO/ANB prevêm uma receita gerada na atividade pesqueira, quando da estabilização do programa de peixamento, da ordem de R\$ 11.985,00 (preços de maio de 2002). Com relação aos investimentos, estimou-se um custo de R\$ 890,00 para o peixamento inicial do reservatório.

6.7 - ADOÇÃO DE MEDIDAS DE SEGURANÇA DO TRABALHO

Durante a execução das obras de engenharia os riscos de acidentes com os operários são relativamente elevados requerendo a adoção de regras rigorosas de segurança no trabalho.

A empreiteira através de palestras ilustrativas, deverá educar e orientar os operários a seguirem regras rigorosas de segurança do trabalho, esclarecendo-os sobre os riscos a que eles estão sujeitos e estimulando o interesse destes pelas questões de prevenção de acidentes. Tal medida visa evitar não só prejuízos econômicos, como também a perda de vidas humanas. Entre os cuidados a serem seguidos com relação à segurança pode-se citar os seguintes:

- munir os operários com ferramentas e equipamentos apropriados para cada tipo de serviço
- dotar os operários de proteção apropriada: capacetes, óculos, luvas, botas, capas, abafadores de ruídos, etc., e tornar obrigatório o seu uso;
- instruir os trabalhadores a não deixarem ferramentas em lugares ou posições inconvenientes;
- evitar o mau hábito de deixar tábuas abandonadas sem lhes tirar os pregos;
- zelar pela correta maneira de transportar materiais e ferramentas;
- evitar o uso de viaturas com freios em más condições, ou com pneus gastos além do limite de segurança, pois podem advir perdas de vidas por atropelamentos ou batidas;
- alertar sobre o risco de desmoronamento das valas escavadas na área das jazidas, podendo ocorrer soterramento, com perdas de vidas humanas;

 estabelecimento de sinalização de trânsito nas vias de serviços e na estrada de acesso à área do empreendimento, de modo a evitar acidentes com veículos.

A empreiteira deve manter os operários sempre vacinados contra doenças infecciosas, tais como, tétano e febre tifóide. E alertá-los para após o serviço efetuarem a higiene pessoal com água e sabão em abundância, como forma de combater as dermatoses. Deve, também, efetuar um levantamento prévio das condições de infra-estrutura do setor saúde, de modo a agilizar o atendimento médico dos operários, no caso da ocorrência de acidentes. Deve, ainda, promover treinamentos sobre o uso e manuseio de explosivos.

Por se tratar de normas trabalhistas, a adoção de medidas de segurança no trabalho deve ser cumprida pela empreiteira sem ônus para o empreendimento.

6.8 - PROGRAMA DE EDUCAÇÃO AMBIENTAL

Entre os principais tensores de origem humana que ocorrem e/ou são passíveis de ocorrer na região onde será implantado o empreendimento estão: desmatamento da vegetação marginal dos cursos d'água para cultivos agrícolas e pastagens; desencadeamento de processos erosivos e de carreamento de sedimentos com conseqüente assoreamento; diminuição da capacidade de acumulação dos mananciais e aporte de poluentes, causando o surgimento de turbidez e trazendo prejuízo ao pleno desenvolvimento dos ecossistemas; acondicionamento impróprio do lixo doméstico com riscos de poluição dos recursos hídricos subterrâneos e superficiais, além do uso de agrotóxicos e fertilizantes na atividade agrícola.

Com tais parâmetros em mente, é necessário que se formule um projeto de educação ambiental destinado aos proprietários e moradores da região, potenciais usuários dos reservatórios, pois somente com a formação de uma consciência ecológica popular se poderá alcançar uma convivência satisfatória entre o homem e o equilíbrio da natureza.

O projeto de educação ambiental ora proposto consiste na atuação junto à comunidade, visando, através da transmissão de determinadas práticas e informações, educá-la em suas relações com o meio ambiente. Nos seus objetivos, o projeto de educação ambiental deve enfocar os seguintes pontos:

- reuniões e outros eventos envolvendo professores das escolas da área de entorno do empreendimento e da sede do município de Nova Olinda, tendo como objetivo a incorporação do enfoque ambiental nas disciplinas curriculares;
- divulgar informações sobre práticas de uso e conservação dos recursos naturais, através de rádio e televisão visando ampliar o nível de conhecimento da população sobre o assunto;
- realizar palestras para associações e/ou grupos formais e informais, tendo em vista promover a participação da população na defesa e proteção do meio ambiente.

O papel da população deverá ser dinâmico, sendo imprescindível sua fiscalização junto às degradações do meio, bem como a real efetivação das diversas medidas mitigadoras a serem adotadas para o sucesso do empreendimento.

Sugere-se para tanto, que o empreendedor realize palestras com os usuários e distribua cartilhas educativas, transmitindo conhecimentos sobre as principais questões ambientais concernentes à área, procurando incutir nos mesmos noções relativas à importância ecológica do ecossistema e da reconstituição e preservação da mata ciliar do reservatório, de modo que a faixa de proteção a ser estabelecida passe a constituir um patrimônio paisagístico do município e do estado, permitindo que eles atuem eficientemente no processo de manutenção e até mesmo de recuperação do equilíbrio ambiental da área. Outro ponto que merece especial destaque no programa de educação ambiental a ser implementado, encontra-se associado a divulgação de normas técnicas para o uso e manejo adequado de agrotóxicos, inclusive quanto a deposição final de embalagens junto aos agricultores da região.

A elaboração das cartilhas, bem como a definição do conteúdo das palestras e até mesmo as suas execuções poderá ficar a cargo da SEMACE. Assim sendo, faz-se necessário o estabelecimento de um convênio entre a SRH e o referido órgão para este fim. Foi prevista uma verba de R\$ 5.000,00 para implementação do Programa de Educação Ambiental, a preços de maio de 2002.

6.9 - PLANO DE REASSENTAMENTO DA POPULAÇÃO

6.9.1 - Generalidades

Tendo por objetivo a relocação das famílias a serem desalojadas da área objeto de desapropriação, recomenda-se a elaboração de um projeto de reassentamento rural pautado nas especificações técnicas do Banco Mundial e na estratégia de reassentamento rural desenvolvida pela SRH, órgão responsável pela efetivação do mesmo.

Estima-se que residam atualmente nos imóveis atingidos pela construção do açude cerca de 70 pessoas agrupadas em 15 famílias, compostas predominantemente por pequenos e médios proprietários rurais. Todavia espera-se um número menor de famílias a serem relocadas, visto que a pesquisa de campo realizada identificou que a maioria dos imóveis contam com áreas remanescentes, sendo apenas cinco propriedades totalmente submersas. A ocorrência de um baixo contingente populacional a ser relocado está associada a baixa densidade demográfica verificada na área da bacia hidráulica do reservatório, tendo-se constatado a presença de diversos imóveis fechados, com os proprietários residindo em Nova Olinda dado a proximidade deste núcleo urbano da área do empreendimento. O abandono das propriedades rurais, em geral, é decorrente da escassez de recursos hídricos na região.

Quanto às expectativas da população ante a implantação do empreendimento, dado a escassez de recursos hídricos permanentes, observou-se uma boa aceitação do projeto tanto na região do empreendimento quanto na cidade de Nova Olinda.

O presente plano dispõe apenas sobre as diretrizes a serem adotadas em um projeto de reassentamento de populações. Tendo em vista o pequeno número de famílias a serem relocadas deverá ser adotado preferencialmente o sistema de permuta de imóveis para as famílias que residem em propriedades que contam com áreas remanescentes. Para as cinco famílias que terão suas propriedades totalmente submersas deverão ser estudadas outras alternativas que vão desde a relocação numa chapada existente na margem direita do futuro reservatório, nas imediações do povoado de Patos, conforme sugerido por alguns dos entrevistados até a relocação em núcleos urbanos próximos ou a compensação monetária. Recomenda-se que seja contemplado no Projeto de Reassentamento a construção das novas moradias com padrão similar ou superior ao existente na região e munidas de instalações sanitárias.

Uma recomendação de grande importância, a ser definida no projeto de reassentamento da população desalojada, será a retomada da atividade econômica da população local. O desenvolvimento da irrigação difusa nas áreas ribeirinhas de jusante e da piscicultura no lago a ser formado, constituem atenuantes desse problema.

6.9.2 - Diretrizes a Serem Adotadas no Projeto de Reassentamento

Antes da execução da pesquisa sócio-econômica propriamente dita, deverá ser efetuado um levantamento e análise dos dados secundários existentes, visando o fornecimento de subsídios para a definição da estratégia de execução dos trabalhos de campo, bem como o delineamento preliminar da realidade a ser estudada.

A participação dos reassentados não voluntários e das populações hospedeiras nas fases do planejamento anteriores à mudança é de extrema importância para o sucesso do projeto de reassentamento. Assim sendo, para obter-se cooperação, participação e "feedback", os reassentados e os hospedeiros deverão ser sistematicamente informados e consultados sobre os seus direitos e sobre as opções possíveis, durante a preparação do projeto de reassentamento.

Contudo, outras medidas deverão ser estabelecidas, como programações das reuniões, entre encarregados do projeto e comunidades dos reassentados e hospedeiros, onde os membros das equipes possam avaliar as preocupações das pessoas, durante as fases de planejamento e execução. Propõe-se a realização de 3 (três) reuniões comunitárias, estrategicamente distribuídas ao longo do processo de elaboração.

Dessa análise deverão surgir elementos para formulação de alternativas, não apenas de locais de reassentamento, como também de alternativas de soluções para a retomada da atividade econômica da população, consideradas as novas perspectivas que surgirão com a criação do reservatório.

A execução da pesquisa sócio-econômica tem por objetivo traçar o perfil da população rural impactada pela formação do reservatório através da aplicação de pesquisa censitária. Além do dimensionamento e caracterização da população alvo, a pesquisa deverá apropriar as expectativas da população face a construção do reservatório, e suas pretensões quanto ao local de residência futura, entre outras. A

pesquisa sócio-econômica com registro dos nomes das famílias afetadas deverá ser realizada o mais cedo possível, a fim de evitar o influxo de populações não merecedoras de indenizações. Deverão ser aplicados questionários para levantamento de ocupantes (proprietários e arrendatários/posseiros), conforme modelo fornecido pela SRH.

Como produto desta etapa inicial deverá ser formulada uma agregação da população, segundo grupos homogêneos do ponto de vista da natureza do impacto sofrido e cujos integrantes deverão receber tratamento análogo para efeito de reassentamento. Como exemplo de prováveis grupos a serem encontrados tem-se:

- famílias que poderão permanecer nas áreas remanescentes das propriedades;
- famílias com solução própria, englobando proprietários de outros imóveis fora da área em apreço, com dimensão suficiente para a sua subsistência e ascensão social;
- famílias com solução própria, englobando proprietários que em função da indenização a receber, terão condições de adquirirem áreas de produção com dimensões suficiente para sua subsistência e ascensão social;
- famílias sem solução própria, impactados apenas no tocante às suas moradias, simples moradores sem atividade agropecuária na área a ser inundada;
- famílias sem solução própria, com atividades agropecuárias na área, notadamente produtores sem terra e pequenos produtores.

Tais informações são imprescindíveis à definição do tamanho mínimo das áreas potenciais a serem selecionadas para o reassentamento.

A avaliação sócio-econômica tem por objetivo avaliar os efeitos da construção da barragem e respectivas infra-estruturas sobre as pessoas da região; detectar as possibilidades do desenvolvimento social proporcionado pela barragem; e, identificar as necessidades e preferências da população afetada. Com base nessa avaliação, o plano de reassentamento deverá fornecer a base para uma combinação de medidas a serem tomadas pela SRH, considerando cada família afetada individualmente, cumprindo assim os objetivos da Política de Reassentamento do Estado.

O estudo deverá avaliar os recursos usados pela comunidade, localizados dentro e fora da área afetada, bem como reunir informações sobre disponibilidade, capacidade e acessibilidade de infra-estrutura de transporte, inclusive trilhas e passagens molhadas; serviços de transporte; serviços utilitários, como eletricidade, abastecimento d'água; outros serviços, inclusive postos de saúde, escolas, mercados, agências de correio; infra-estrutura comunitária, como igrejas, campos de futebol, etc. e fontes de combustível, especialmente lenha.

A avaliação social identificará as características principais da vida social na comunidade, inclusive associações formais e informais, grupos religiosos e grupos afins. Todas características deverão ser levadas em conta no Projeto de Reassentamento.

6.9.3 - Identificação e Seleção de Áreas para Reassentamento

Na escolha das áreas potenciais para implantação do reassentamento da população deverão ser analisados parâmetros pertinentes às potencialidades de terras aráveis aptas para a agricultura ou não; posicionamento da área em relação a fontes hídricas; a infra-estrutura de transporte existente e planejada; as atividades produtivas existentes e a proximidade dos núcleos urbanos. No caso de reassentamentos rurais, o potencial de produção e as vantagens de situação do novo local deverão ser, no mínimo, equivalentes às do antigo local. Assim sendo, o ideal é se adotar uma política de "terra por terra", que ofereça terras de qualidade equivalente àquelas desapropriadas, no mínimo.

A seleção da área se baseará, também, no levantamento da infra-estrutura fundiária e caracterização sócio-econômica das áreas potenciais, visando minimizar os conflitos com as populações hospedeiras.

A comparação entre alternativas para efeito da seleção e posterior indicação pelo órgão empreendedor, deverá ser demonstrada em uma ou mais matrizes, conforme a diversidade dos grupos homogêneos, nas quais estarão dispostos os principais atributos qualitativos e quantitativos de cada alternativa estudada.

6.9.4 - Estudo de Alternativas e Anteprojeto de Reassentamento

Com base na caracterização sócio-demográfica da população impactada deverá ser procedida a definição das proposições de reassentamento para os diferentes casos existentes.

Dentre as opções que podem ser adotadas e que deverão ser discutidas com as famílias afetadas podese citar: o reassentamento nas áreas remanescentes; o reassentamento a jusante ou a montante do reservatório; o reassentamento em centros urbanos próximos e a compensação monetária, entre outros. Serão avaliadas, também, as alternativas propostas pela população alvo, tanto em termos de custos, como de satisfação das necessidades da comunidade local.

Estabelecidas as alternativas de reassentamento, deverão ser selecionadas as mais interessantes do ponto de vista econômico e social, mediante a execução de análises expeditas de custos e benefícios. As soluções alternativas deverão oferecer uma probabilidade razoável para a população afetada manter ou melhorar o seu atual nível de vida.

Após a seleção das melhores alternativas de reassentamento, serão elaborados os seus anteprojetos, os quais deverão contemplar as obras de engenharia relativas às habitações, rede viária, prédios públicos (escolas, postos de saúde, etc.), eletrificação e saneamento básico. Deverão ser quantificados e estimados os custos relativos aos diferentes segmentos contemplados pelo anteprojeto.

As alternativas selecionadas e anteprojetadas deverão ser submetidas à apreciação social da população afetada, mesmo que tal participação seja resumida a uma representação.

Tal apreciação tomará por parâmetros de medida as possibilidades de progresso social abertas pelo reassentamento e a satisfação das aspirações da população afetada.

6.9.5 - Arcabouço Legal

Para a montagem de um projeto viável de reassentamento torna-se necessária uma perfeita compreensão dos aspectos legais envolvidos. Assim sendo, deverá ser feita uma análise que determine a natureza do arcabouço legal do reassentamento pretendido, baseada nos seguintes pontos:

- a extensão e importância dos apossamentos existentes, a natureza das indenizações decorrentes, tanto em termos de metodologia das avaliações quanto dos prazos de desembolsos;
- os procedimentos legais e administrativos aplicáveis, incluindo os processos de recursos e os prazos legais desses processos;
- titulação das terras e procedimentos de registro;
- leis e regulamentos pertinentes aos organismos responsáveis pela execução do reassentamento e àqueles relacionados com a desapropriação de terras e indenizações, com os reagrupamentos de terras, com os usos de terras, com o meio ambiente, com o emprego das águas e com o bem estar social.

6.9.6 - Programas de Reativação da Economia

O Plano de Reassentamento deverá identificar a necessidade da manutenção dos níveis de renda da população durante a interrupção das suas atividades econômicas normais. Devendo ser estimada a necessidade de pagamentos de emergência temporários ou serem propostas medidas de geração de renda que serão sujeitas à análise de pré-viabilidade, considerando a disponibilidade de capital, demanda local, suprimento de insumos, mercados, transportes, etc..

Não se pode excluir, dentro de um projeto de reassentamento, o estabelecimento de estratégias que assegurem a subsistência e ascensão social das famílias de agricultores que serão deslocados de suas atividades atuais. Isto se torna mais importante face a carência de alternativas viáveis em áreas que se caracterizam pelas limitações da agricultura de sequeiro e da falta de novas oportunidades de emprego.

Dentro deste contexto, procurar-se-á, definir modelos de produção (irrigação difusa, pesca, etc.) capazes de melhorar as condições de vida da população a ser reassentada, de modo a fortalecer a comunidade e facilitar o seu processo de emancipação.

6.9.7 - Programa de Implementação do Projeto de Reassentamento

Por fim, será elaborado o programa de implementação do Projeto de Reassentamento, o qual contemplará inicialmente a quantificação e estimativa dos custos relativos às diversas etapas do projeto, bem como a confecção de um plano de financiamento, elaborado juntamente com a SRH, apresentando as fontes de recursos para todos os custos, e um cronograma de implantação das atividades a serem desenvolvidas.

Deverá, também, ser elaborada, juntamente com a SRH, uma matriz institucional indicando os órgãos públicos e/ou instituições privadas responsáveis pela implementação das atividades previstas, além de uma lista de acordos legais (convênios, contratos, etc.) que serão necessários à implementação do programa e das minutas dos referidos acordos.

Os custos a serem incorridos com o reassentamento da população desalojada das áreas das obras civis e da bacia hidráulica da Barragem Patos foram orçados em R\$ 225.000,00, a preços de maio de 2002, tendo sido considerado um custo médio por família de R\$ 15.000,00, tendo como base custos de reassentamentos já executados pela SRH em outros açudes, no âmbito do Projeto de Desenvolvimento Urbano e Gestão dos Recursos Hídricos do Estado do Ceará (PROURB-CE) e do próprio PROGERIRH. Para efetuar o cálculo do custo do reassentamento da população residente na área do reservatório, procedeu-se à contabilização do número de famílias residentes na área inundada.

6.10 - PLANO DE IDENTIFICAÇÃO E RESGATE DO PATRIMÔNIO ARQUEOLÓGICO E PALEONTOLÓGICO

Na região onde será implantado a Barragem Patos não foram registradas ocorrências arqueológicas e paleontológicas pelos órgãos competentes até o presente momento. Todavia qualquer área escolhida para a implantação de obras hídráulicas pode ser considerada como de alto potencial arqueológico e paleontológico, uma vez que áreas periféricas a cursos d'água até 500 m de cada margem, além dos limites das planícies de inundação, apresentam alta incidência de artefatos pré-históricos por serem áreas preferenciais para assentamentos humanos, face à oferta de água, alimentos e matéria-prima para a fabricação de instrumentos líticos. Os fósseis, por sua vez, são mais comuns nas planícies de inundação, terraços fluviais e calhas dos rios, onde freqüentemente, são encontradas ossadas fossilizadas de grandes animais extintos, há cerca de 10 mil anos (mega-fauna quaternária).

A região do Cariri cearense, onde se situa o empreendimento ora em estudo, possui grande significância histórica e cultural para o Ceará, estando aí localizados alguns dos primeiros núcleos de ocupação do Vale do Jaguaribe, havendo registros de sítios arqueológicos nos municípios de Campos Sales (líticos polidos), e Lavras da Mangabeira (esqueletos humanos). Quanto ao patrimônio paleontológico, a Chapada do Araripe posicionada a cerca de 10,0 km ao sul da área do empreendimento, é reconhecida no meio científico como um dos sítios paleontológicos mais importantes do mundo, pela sua riqueza e diversificação. Abriga nos sedimentos calcíferos aí existentes uma rica fauna fossilizada, representada por espécies de ostracóides, moluscos, equinóides e peixes diversos. Os registros de ocorrências paleontológicas na região do Cariri estão associados tanto a Chapada do Araripe como a sua área de

entorno. Tais ocorrências foram registradas nos municípios de Crato, Salitre, Assaré, Várzea Alegre e Mauriti, ocorrendo em áreas que distam de 10 a 50 km das sedes dos municípios citados. Assim sendo, deverão ser efetuados estudos científicos na área de implantação das obras, na área da bacia hidráulica do reservatório e nas áreas de empréstimos visando identificar inicialmente a evidência ou não de tais ocorrências, através da presença de material de superfície.

Deverá ser procedida a coleta total do material de superfície detectado, sendo este separado conforme seu tipo (cerâmico, lítico, ósseo, etc.) e acondicionado em embalagens apropriadas, devidamente etiquetadas. Tendo-se concluído os trabalhos de campo, serão desenvolvidas diferentes atividades de laboratório, envolvendo o processamento e análise dos materiais e informações coletadas.

Com base nos estudos preliminares efetuados deverão ser executadas prospecções nas áreas dos sítios identificados através da realização de escavações para aqueles que apresentam elevado potencial informativo acerca de características funcionais e de uso do espaço. Os demais sítios deverão receber diferentes níveis de complementação dos trabalhos anteriormente efetuados (abertura de poços-teste e/ou trincheiras para verificar estratigrafia e densidade, delimitação da área de assentamento, etc.).

Deverão ser engajados nesta atividade profissionais das áreas de arqueologia e paleontologia, devidamente habilitados, os quais deverão contar com a autorização do IPHAN - Instituto do Patrimônio Histórico e Artístico Nacional e do DNPM - Departamento Nacional de Produção Mineral, respectivamente.

Ressalta-se que, mesmo com a efetuação de prospecções na área de influência direta das obras, sempre é possível a descoberta ao acaso de uma nova ocorrência, principalmente nas atividades que envolvem movimentação de terra, como escavações e terraplenagem. Nesse caso, o procedimento necessário consiste na paralisação parcial das atividades naquele local, até a chegada dos profissionais especializados para o resgate do material, dentro dos critérios científicos.

Após encerramento dos trabalhos de campo, pode-se, então, solicitar o documento de liberação de área junto ao IPHAN. A definição do cronograma de salvamento deverá considerar o próprio cronograma de execução das obras, organizando antecipadamente as atividades de modo a evitar, de um lado, atrasos no cronograma do empreendedor e, de outro, a destruição das evidências arqueológicas.

O material resgatado nos levantamentos de campo deverá ser encaminhado para instituições científicas apropriadas, visando seu armazenamento e disponibilização para pesquisa. Nessas instituições deverá, se possível, ser implantado um Ecomuseu para guarda, proteção e exposição da coleção resgatada.

A responsabilidade pelo desenvolvimento das atividades concernentes ao salvamento do patrimônio histórico, arqueológico e paleontológico deverá ser da SRH, ficando a regulamentação e fiscalização a cargo do IPHAN, no caso dos achados históricos e arqueológicos, e do DNPM, no caso dos achados paleontológicos. Os custos a serem incorridos com esta medida foram orçados em R\$ 2.500,00, a preços de maio de 2002.

7 - MONITORAMENTOS AMBIENTAIS E GESTÃO DOS RECURSOS HÍDRICOS

7 - MONITORAMENTOS AMBIENTAIS E GESTÃO DOS RECURSOS HÍDRICOS

7.1 - GENERALIDADES

O gerenciamento dos recursos hídricos surge como um meio de assegurar a utilização múltipla e integrada deste recurso, garantindo às populações e às atividades econômicas, água em qualidade e quantidade suficiente para atender suas necessidades.

É sabido que os usos do solo e as atividades realizadas numa bacia hidrográfica definem a quantidade e a qualidade necessárias da água. Assim, torna-se imprescindível disciplinar-se os usos do solo e da água, de modo a se obter o melhor aproveitamento dos recursos hídricos.

A seguir são apresentadas as diretrizes gerais para a execução do gerenciamento dos recursos hídricos represados, as quais devem ser desenvolvidas a nível de projetos específicos.

7.2 - GERENCIAMENTO DOS RECURSOS HÍDRICOS REPRESADOS/ESTABE-LECIMENTO DE OUTORGAS E TARIFAÇÃO D'ÁGUA

Os planos e programas ligados aos recursos hídricos devem relacionar-se com os planos de desenvolvimento econômico dos âmbitos federal, estadual e municipal, de modo que o próprio investimento estabeleça formas de articulação entre as entidades de gestão dos açudes, e aquelas do planejamento e coordenação geral de programas públicos. Desta forma, a gestão do reservatório deve ser conduzida de acordo com uma perspectiva global, considerando a bacia hidrográfica como um todo.

O núcleo central do modelo de gestão dos recursos hídricos será constituído por um conjunto de entidades que deverá desenvolver ações de gestão unificada, considerando a quantidade e qualidade dos recursos hídricos, a integração dos usos múltiplos, o controle do regime das águas, o controle da poluição e dos processos erosivos.

O modelo de gestão a ser empregado deverá prever as formas de relacionamento entre as entidades de gestão e os usuários, compreendendo os direitos e as obrigações decorrentes do uso e derivação da água.

O Estado do Ceará vem atualmente desenvolvendo um planejamento global de utilização dos recursos hídricos, com vistas a um equilíbrio dinâmico do balanço demanda versus disponibilidade, procurando impedir que a água venha a ser um fator limitante ao desenvolvimento econômico e social do Estado.

Para propiciar as condições de desenvolvimento sustentável área do açude, de forma que o uso dos recursos naturais não supere sua condição de se renovar, garantindo a melhoria de vida para todos e evitando possíveis limitações ao desenvolvimento econômico e social das gerações futuras, é fundamental gerenciar com eficiência estes recursos.

Tendo como referencial o princípio de que a água deve ser gerenciada de forma descentralizada, integrada e participativa, sendo a bacia hidrográfica a unidade de planejamento e atuação, deve-se estimular a participação de usuários, instituições governamentais e não governamentais e da sociedade civil neste processo. Para que o gerenciamento se dê nesses moldes, faz-se necessário a utilização de vários instrumentos, tais como:

- planejamento: visa realizar estudos na busca de adequar, o uso, controle e preservação dos recursos hídricos às necessidades sociais e/ou governamentais identificadas na bacia hidrográfica;
- operação: objetiva definir a liberação de águas de forma a atender a demanda (os usos), levando em consideração a oferta disponível e as características do reservatório;
- monitoramento: tem a função de realizar o acompanhamento dos aspectos qualitativos e quantitativos da água, servindo de informação para auxiliar a tomada de decisão da operação;
- manutenção: é importante na realização de estudos da situação física das estruturas hidráulicas, verificando a necessidade da recuperação e definindo planos de conservação para as referidas estruturas;
- apoio a organização dos usuários: conscientizar/educar os usuários para que, de forma organizada,
 possam gerenciar, com o apoio técnico, este bem tão precioso da natureza.

A utilização destes instrumentos tem por finalidade a implementação de um sistema gerencial que integre as ações dos diversos órgãos federais, estaduais ou municipais que atuam no setor, e que seja capaz de fornecer informações para a tomada de decisão com o objetivo final de promover, de forma coordenada, o uso, controle e preservação da água.

Para facilitar a implementação da lei de reursos hídrios (Lei n° 11.996/92) e, possibilitar um maior controle sobre a quantidade e distribuição de água necessária para atender todas as necessidades dos usuários, foram definidos alguns instrumentos legais:

- a outorga: que se constitui numa autorização, com validade anual, concedida pela Secretaria dos Recursos Hídricos que assegura ao usuário o direito de usar a água num determinado local, retirando-a de uma determinada fonte superficial ou subterrânea, com uma vazão definida e para uma finalidade também definida;
- a licença para obras hídricas: que se constitui numa autorização concedida pela Secretaria dos Recursos Hídricos à execução de qualquer obra ou serviço de oferta de água que altere o regime, a quantidade ou a qualidade dos recursos hídricos superficiais e subterrâneos;
- a cobrança pelo uso da água bruta: prevista como forma de diminuir o desperdício, aumentar a
 eficiência no uso da água e como fonte arrecadadora de fundos para cobrir as despesas com gestão,
 operação e manutenção das obras hídricas.

O estabelecimento do sistema de outorga e tarifação d'água ficará a cargo da Companhia de Gerenciamento dos Recursos Hídricos (COGERH) que, juntamente com a SRH e a Associação dos Usuários e/ou Conselho Gestor da Barragem Patos, a ser criado posteriormente, tratará do gerenciamento deste manancial.

7.3 - PLANO DE MONITORAMENTO DA QUALIDADE DA ÁGUA REPRESADA

O controle sistemático da qualidade da água da Barragem Patos é de fundamental importância para a garantia dos empreendimentos localizados a jusante e o controle de atividades poluidoras na bacia hidrográfica, haja vista a destinação da água a ser reservada. Desta forma, o disciplinamento do uso deverá ser feito tanto no futuro reservatório, quanto nos eixos da bacia contribuinte. O monitoramento da qualidade da água represada deve ser conduzido visando detectar pontos ou níveis de poluição.

Tendo em vista que essa água servirá para o abastecimento da cidade de Nova Olinda e dos distritos de Patos, Mamão e Taboleiro do Bonito e da população ribeirinha de jusante, sua qualidade deverá se adequar, da melhor maneira possível, aos futuros usos (abastecimento humano, industrial, irrigação difusa e dessedentação animal).

Para um estudo básico de avaliação de qualidade das águas, em vistas de seus usos preponderantes, de acordo com a classificação da Resolução CONAMA nº 020/86, sugere-se o seguinte plano de coleta:

- Seleção de estações de monitoramento no reservatório junto à entrada dos poluentes;
- Levantamento e caraterização das principais atividades poluidoras da bacia que podem influir na qualidade da água do reservatório;
- Estabelecimento de pontos de amostragem nos principais tributários do reservatório;
- Determinação dos pontos de amostragem ao longo do corpo do reservatório.

Durante a formação do reservatório deverão ser coletadas amostras de água para análise, desde o início até o enchimento completo do açude. Após o enchimento, deverão ser coletadas amostras de água, ao final da estação seca, e início, meio e final da estação chuvosa. Portanto, além da fase de amostragem inicial (enchimento do reservatório), deverão ser feitas, no mínimo, quatro amostragens anuais.

Para exames de rotina, a coleta pode ser efetuada em um ou dois pontos do reservatório, de preferência junto ao local de captação da água para abastecimento humano e próximo à possíveis atividades poluidoras situadas nas imediações da bacia hidráulica.

As dosagens a serem feitas, os parâmetros de classificação das águas e a própria classificação constam na Resolução CONAMA n° 020/86. Até que a SEMACE defina a classe em que será adequada a água do reservatório, esta deverá ser considerada como pertencente à Classe 2, a qual se destina ao abastecimento doméstico, após tratamento convencional.

À SRH cumpre desempenhar as atividades de monitoramento da qualidade da água represada. Os custos anuais advindos com esta atividade foram estimados em R\$ 1.231,00 (valor expresso em reais de maio de 2.002), considerando a coleta de 8 amostras anuais, sendo duas a cada trimestre.

7.4 - PLANO DE MONITORAMENTO DO NÍVEL PIEZOMÉTRICO E DO RESERVATÓRIO

7.4.1 - Monitoramento do Nível Piezométrico

Os recursos hídricos subterrâneos e superficiais são alterados no seu equilíbrio original ante as modificações imposta pela construção de reservatórios. O ajuste dos elementos naturais, decorrentes das alterações do meio abiótico como um todo, acarreta conseqüências que, dependendo do contexto geológico-hidrológico, podem ser danosas ou benéficas.

As áreas mais afetadas são aquelas marginais ao reservatório, onde a profundidade da superfície piezométrica original era inferior à cota final do lago. A superfície piezométrica quando sofre elevação tenderá a aflorar ou ficar muito próxima da superfície nos pontos topograficamente mais rebaixados. Esse efeito será menos pronunciado à medida em que se caminha para montante e perpendicularmente ao reservatório. Apesar desse fato ser benéfico por aumentar a espessura saturada do aqüífero livre e conseqüentemente a vazão dos poços, implica também na deteriorização do meio, acarretando problemas tais como: manutenção de áreas permanentemente alagadas, afogamento de raízes, aumento da taxa de evapotranspiração, redução da taxa de infiltração, aumento da salinização das águas subterrâneas, saturação de sub-leito de estradas e diminuição da capacidade de carga dos solos.

A previsão ou análise de comportamento das águas subterrâneas diante da implantação de uma barragem, é uma técnica simples que se utiliza basicamente do conhecimento das características originais dos aqüíferos, confrontando-se posteriormente com as novas condições de fronteiras impostas.

No caso específico da Barragem Patos, são esperadas alterações de nível do lençol freático, principalmente nas regiões próximas ao reservatório, já que ao longo do trecho do riacho Patos a influência do volume da vazão regularizada será bastante reduzida, não chegando a implicar em riscos de elevação do lençol freático. O caminho a ser descrito pelas águas deverá ser conhecido, sendo para isso necessário que se determine a forma da superfície piezométrica ou nível freático, através do monitoramento de uma rede de poços, aproveitando-se os já existentes, localizados numa faixa de 2,0 km em torno do reservatório e às margens do riacho Patos. Convém iniciar o monitoramento antes da formação do reservatório para que possa ser estabelecido o efeito do enchimento e a partir daí adotar soluções para os problemas que possam surgir.

7.4.2 - Monitoramento do Nível do Reservatório

A explotação do reservatório, cuja vazão se destinará ao abastecimento d'água da cidade de Nova Olinda (abastecimento humano e industrial) e a perenização do riacho Patos, causará impacto sobre o volume armazenado, principalmente quando se considerar as variações climáticas ocorridas na região,

resultando em oscilações no nível do reservatório. Em virtude dessas alterações, faz-se imprescindível o monitoramento do seu nível, com vistas à obtenção de elementos básicos que sirvam para propor soluções e tomadas de decisão.

Para o monitoramento do nível d'água do reservatório deverão ser efetuadas leituras periódicas da régua limnimétrica instalada no reservatório, com vistas a controlar o seu nível de explotação. As leituras deverão ser efetuadas a cada trimestre. A efetivação dessa medida constitui ponto importante para que a explotação do manancial se processe de forma segura, garantindo, assim, os objetivos pretendidos pelo projeto.

O monitoramento do nível piezométrico e do reservatório ficará a cargo da SRH. O custo incorrido com tal atividade encontra-se incluso na administração da faixa de proteção do reservatório, devendo esta atividade integrar as tarefas a serem desenvolvidas pela fiscalização.

7.5 - PLANO DE MONITORAMENTO DA SEDIMENTAÇÃO NO RESERVATÓRIO

Uma vez implantado o barramento, a bacia será seccionada e o reservatório colherá a sedimentação oriunda de toda a área contribuinte. Portanto, a análise quantitativa e qualitativa dos sedimentos que serão depositados no reservatório permitirá o conhecimento das atividades exercidas na bacia hidrográfica, as quais possam vir a comprometer a qualidade do meio ambiente.

Após o desmatamento da área a ser inundada, deverão ser escolhidos pontos de amostragem da sedimentação, que serão materializados com marcos de concreto rentes ao solo, com áreas não inferiores a 1,0 m2, os quais deverão ser demarcados por bóias.

As amostras devem ser feitas duas vezes por ano, constando dos seguintes tipos de análise dos sedimentos: granulometria; conteúdo de matéria orgânica; metais pesados e componentes de pesticidas, sempre que sinais de alerta ocorrerem a partir das análises da água.

O acondicionamento das amostras coletadas deve ser feitos em frasco de boca larga de polietileno para a análise de metais, nutrientes e carga orgânica (DBO/DQO/COT), ou de vidros para compostos orgânicos, óleos e graxas. É recomendável congelar as amostras a 20°C para preservar a sua integridade, deixando uma alíquota sem refrigeração, para determinação da composição granulométrica.

Os custos anuais incorridos na execução do monitoramento da sedimentação foram estimados em R\$ 1.311,00 (valor expresso em reais de maio de 2.002), considerando a coleta de 4 amostras anuais, sendo duas a cada semestre. Esta atividade ficará a cargo da SRH/COGERH.

7.6 - PLANO DE DELIMITAÇÃO E ADMINISTRAÇÃO DA FAIXA DE PROTEÇÃO DO RESERVATÓRIO

7.6.1 - Delimitação da Faixa de Proteção

A utilização de faixa de proteção vegetal em áreas marginais de recursos hídricos, neste caso a Barragem Patos, tem uma enorme importância para a proteção deste empreendimentos, uma vez que esta serve de barreira ao aporte de sedimentos e poluentes, reduzindo sensivelmente os riscos de poluição da água represada, e de assoreamento e consequente perda da capacidade de acumulação do reservatório.

Quanto à delimitação da área da faixa de proteção, de acordo com a legislação ambiental vigente estas devem ter uma largura mínima de 100,0 m medidos horizontalmente a partir da cota de máxima inundação do reservatório.

7.6.2 - Administração da Faixa de Proteção do Reservatório

O estabelecimento de uma faixa de proteção periférica ao lago visa a preservação do meio natural, com reflexos positivos sobre a vida silvestre, impedindo atividades prejudiciais ao reservatório, e servindo de anteparo natural ao carreamento de sedimentos causado pela erosão laminar das encostas.

A proteção da reserva ecológica periférica ao reservatório exigirá a constituição de uma polícia florestal, que terá a seu cargo uma considerável tarefa educativa, devendo ser engajada nesta atividade a própria população local. Recomenda-se que a SEMACE estabeleça regras a serem seguidas pela população.

É importante que a área da faixa de proteção seja cercada, deixando-se apenas os corredores necessários para os acessos aos locais em que se desenvolvam as atividades de pesca, balneário, entre outras. No domínio da faixa de proteção não será tolerado o exercício de atividades agrícolas e/ou pecuárias de quaisquer espécies. No caso específico de pontos de bebida para o gado, recomenda-se a construção de valas que conduzam a água para fora da reserva, mesmo que seja preciso bombeamento. Outra atividade que pode vir a ser danosa ao ecossistema do reservatório é a pesca. A salga de peixe nas margens do lago deve ser expressamente proibida, haja vista o risco de salinização da água represada.

Os custos anuais incorridos com esta atividade foram orçados em R\$ 2.160,00 considerando a contratação de 1 (um) fiscal, recrutados juntos à população residente na área periférica ao reservatório (valor expresso em reais de maio de 2002). A responsabilidade da implementação do presente plano é da SRH/COGERH, devendo tal órgão receber o apoio da SEMACE e do IBAMA.

7.7 - ZONEAMENTO DE USOS NO RESERVATÓRIO

Os usos da água armazenada na Barragem Patos devem ser controlados, visto que muitos deles podem vir a ser conflitantes, resultando na poluição de suas águas, cuja destinação principal é o abastecimento de populações e a irrigação.

Uma prática importante é o zoneamento de usos no reservatório, devendo-se procurar afastar dos pontos de captação d'água para abastecimento doméstico aqueles usos que são incompatíveis com este fim. Nesse contexto, não deve ser permitido num raio de, no mínimo, 500 m em torno de áreas destinadas a captação d'água para abastecimento humano, usos tais como banhos, lavagens de roupas, etc., devendo tais áreas serem demarcadas com cabos suspensos por bóias.

Deverá ser proibido o uso de lanchas e outros equipamentos náuticos motorizados, com vistas a evitar a poluição do reservatório por óleos e resíduos de graxas. Além disso, as hélices dos motores contribuem para desestruturar a constituição física dos componentes planctônicos (fito e zooplâncton), ocasionando desequilíbrio na cadeia alimentar do ecossistema aquático.

Não se deve permitir o lançamento de papéis , garrafas, latas, vidros e outros resíduos na água, nem mesmo às margens do lago pois, além de poluir o mesmo, prejudicará o valor paisagístico e estético do manancial. As responsabilidades e custos da presente medida encontram-se inclusos no plano de administração da faixa de proteção do reservatório, descrito no item anterior.

7.8 - MANUTENÇÃO DA INFRA-ESTRUTURA IMPLANTADA

As obras de engenharia constituem infra-estruturas projetadas para durar muito tempo. Entretanto, com demasiada freqüência, vê-se obras com pouco tempo de implantação já apresentando sinais visíveis de deterioração. O mau funcionamento de estruturas e outras situações indesejáveis, podem vir a impossibilitar o desenvolvimento das atividades rotineiras do empreendimento. Como resultado, surgem danos materiais e prejuízos financeiros, além dos inconvenientes da interrupção do suprimento da vazão regularizada.

No caso da Barragem Patos, as principais atividades de manutenção previstas são as seguintes: lubrificação de comportas, tratamento anti-corrosivo, limpeza de entulhos, tubulações, galerias, registros, válvulas, integridade do corpo do barramento e vegetação das ombreiras.

Outras atividades de manutenção em reservatórios compreendem o controle da proliferação de plantas aquáticas, remoção de grandes entulhos (por exemplo, troncos de árvores) que flutuam na água; controle da qualidade da água visando detectar possíveis focos de poluição; e, efetuação de levantamento de depósito de sólidos no fundo dos reservatórios. Estas atividades requerem pouco tempo, pois são periódicas, no entanto, são extremamente importantes, a fim de detectar imediatamente a necessidade de uma ação corretiva, mantendo assim a integridade do empreendimento e seu pleno funcionamento.

A atividade de manutenção da Barragem Patos ficará a cargo da SRH/COGERH, que deverá formular um programa de manutenção, baseado no inventário de todas as obras que precisem de serviços, devendo ser contempladas as seguintes medidas: fixar o volume de atividades de manutenção a serem executadas anualmente; estabelecer o melhor ciclo de manutenção para cada tipo de obra; determinar as necessidades de equipamentos, material de consumo, mão-de-obra e contratação de firmas

especializadas para determinados tipos de serviços; orçamentar e estabelecer as prioridades de manutenção.

As estradas da rede rodoviária que permitem o acesso até o eixo do barramento, devem ter seus leitos regularmente restaurados, principalmente após o período chuvoso, de modo a evitar inconvenientes na operação de manutenção, administração da faixa de proteção do reservatório e monitoramentos concernentes ao empreendimento.

Recomenda-se ainda, no escopo dessa medida, a efetuação de vistorias no sentido de detectar falhas ao longo do eixo do barramento e no tratamento dado à fundação da barragem (injeções de concreto), buscando a identificação de possíveis vazamentos que venham comprometer a sua estrutura. Os custos a serem incorridos com esta medida já foram previstos no orçamento do projeto de engenharia.

7.9 - CUSTO DE IMPLANTAÇÃO DO PROGRAMA DE MONITORAMENTO E DAS MEDIDAS DE PROTEÇÃO AMBIENTAL

Os custos a serem incorridos com a implementação do programa de monitoramento e medidas de proteção ambiental referente ao Projeto da Barragem Patos, cujas diretrizes são apresentadas nos Capítulos 6 e 7 do presente relatório, foram orçados em R\$ 239.222,00, a preços de maio de 2002. Ressalta-se que neste montante não estão inclusos os custos das medidas de adoção de normas de segurança no trabalho, desmatamento zoneado da área da bacia hidráulica do reservatório, gerenciamento dos recursos hídricos represados/estabelecimento de outorgas e manutenção da infraestrutura implantada.

A adoção de normas de segurança no trabalho é uma exigência da legislação trabalhista devendo ser cumprida pela empreiteira sem ônus para o empreendedor. No caso específico do desmatamento zoneado da área da bacia hidráulica do reservatório e da manutenção da infra-estrutura implantada, os custos incorridos nestas atividades são parte integrante do projeto de engenharia.

O programa de gerenciamento dos recursos hídricos represados/ estabelecimento de outorgas e tarifação d'água já são exercidos pela SRH não devendo incorrer em ônus para o empreendimento.

Os custos referentes aos monitoramentos dos níveis piezométrico e do reservatório, bem como as atividades pertinentes ao zoneamento de usos no reservatório, encontram-se inclusos no orçamento do plano de administração da faixa de proteção. Já os custos referentes a relocação da infra-estrutura de uso público atingida (estradas vicinais e redes elétricas de baixa tensão) e a recomposição paisagística das áreas de empréstimos estes só poderão ser estimados quando forem definidas as jazidas que serão efetivamente exploradas e as infra-estruturas cujas relocações se façam realmente necessárias. O Quadro 7.1 apresenta os valores do programa de monitoramento e das medidas de proteção ambiental preconizadas, exceto as mencionadas anteriormente.

Quadro 7.1

Custo das Medidas de Proteção Ambiental Preconizadas

Discriminação	Valor (R\$) 1
Administração da Faixa de Proteção do Reservatório	2.160,00
Plano de Proteção da Fauna	2.130,00
Programa de Educação Ambiental	2.500,00
Monitoramento da Qualidade da Água Represada	1.231,00
Monitoramento da Sedimentação no Reservatório	1.311,00
Reassentamento da População Desalojada	225.000,00
Identificação e Resgate do Patrimônio Arqueológico e Paleontológico	2.500,00
Limpeza da Área da Bacia Hidráulica	1.500,00
Peixamento do reservatório	890,00
TOTAL	239.222,00

⁽¹⁾ Valores expressos em reais de maio de 2002.

8 - CONCLUSÕES E RECOMENDAÇÕES

8 - CONCLUSÕES E RECOMENDAÇÕES

O objetivo deste trabalho foi analisar a viabilidade ambiental do projeto da Barragem Patos. Os resultados encontrados revestem-se de importância à medida que permitem visualizar que a implantação do empreendimento apesar de estar associada à geração de uma série de alterações negativas para a qualidade do meio ambiente, pode ter essa situação minorada ou até sanada com a implementação de medidas de proteção ambiental por parte do órgão empreendedor. Conclui-se, portanto, que com a adoção de tais medidas, o projeto se torna bastante recomendável, com um pronunciado caráter benéfico para o meio sócio-econômico e um nível de adversidades perfeitamente tolerável no que se refere ao meio natural.

O balanço dos efeitos econômicos do empreendimento, revela que o custo de oportunidade da área a ser inundada é baixo, pois dos 15 imóveis atingidos cerca de 25,0% não são explorados economicamente e apenas cerca de 10,0% da área dos demais imóveis é explorada com agricultura, devido as limitações impostas pela escassez de recursos hídricos e condições edáficas desfavoráveis. Em contrapartida, o uso dos recursos hídricos provenientes do reservatório permitirá o reforço ao abastecimento d'água da cidade de Nova Olinda (abastecimento humano e industrial) e dos distritos de Patos, Mamão e Taboleiro do Bonito, bem como da população ribeirinha de jusante. A perenização do riacho Patos contribuirá ainda para o desenvolvimento da irrigação difusa e para a desendentação animal, além do desenvolvimento da pesca no lago a ser formado.

Quanto ao contigente populacional a ser relocado, este apresenta-se pouco significativo, sendo composto por 15 famílias, cuja maioria poderá ser reassentada nas áreas remanescentes das propriedades. Para as outras cinco famílias, cujas propriedades serão totalmente submersas, deverão ser estudadas outras alternativas de reassentamento, que vão desde a relocação numa chapada situada a margem direita do futuro reservatório nas imediações do povoado de Patos até a relocação em núcleos urbanos próximos ou a compensação monetária, sempre de acordo com as solicitações da população alvo. O projeto de reassentamento deverá contemplar um programa de reativação da economia da área, uma vez que a população terá sua atividade produtiva afetada. Deverá ser evidenciado, também, no seu escopo o caráter sanitário na construção das novas residências dos reassentados.

Outro ponto que merece destaque é o fato do reservatório não contar com áreas irrigadas posicionadas na retaguarda do reservatório, sendo atualmente os riscos de poluição das águas represadas pelo aporte de agrotóxicos considerados relativamente reduzidos. Quanto a presença de núcleos urbanos que possam contribuir com o aporte de efluentes domésticos, foi detectada apenas a presença do povoado de Patos, que encontra-se posicionado as margens do futuro reservatório, devendo ser contemplado com a implementação de saneamento básico (fossas sépticas).

Merece ressalva, também o fato do reservatório não contar com solos salinos na sua bacia de contribuição, o que aliado ao seu baixo tempo de detenção, tornará bastante reduzidos os riscos de salinização das águas represadas, não sendo necessário que esta questão seja considerada por ocasião da fase de operação do reservatório.

Quanto aos patrimônios arqueológico e paleontológico, tendo em vista que a região do Cariri é considerada pelos órgãos competentes como bastante rica no que se refere a estes tipos de patrimônio e que a área do empreendimento encontra-se posicionada a cerca de 10,0 km da Chapada do Araripe, que é considerada pela classe científica como um dos sítios paleontológicos mais ricos do mundo, faz-se necessário antes da implantação das obras o desenvolvimento de estudos detalhados nesta área.

9 - BIBLIOGRAFIA

9 - BIBLIOGRAFIA

- 01 BRAGA, R., Plantas do Nordeste, Especialmente do Ceará. Fortaleza, ESAM, 1953. 523p.
- 02 BOTTURA, J.A. & SANTOS J.P., Impactos Hidrogeológicos de Reservatórios. São Paulo, 348p.
- 03 BRANCO, S.M., Hidrobiologia Aplicada à Engenharia Sanitária. São Carlos, CETESB, 1978. 620p.
- 04 BRANCO, S.M., & ROCHA A.A., **Poluição, Proteção e Usos Múltiplos de Represas**. São Carlos, Ed. E. Blucher, 1977. 185 p.
- 05 CESP/DRN, Reservatórios Modelo Piloto de Projeto Integral. São Paulo, CESP, 1978. 119p.
- 06 CETESB, Guia de Coleta e Preservação de Amostras de Água. São Paulo, CETESB, 1987. 149p.
- 07 COGERH, Monitoramento Indicativo do Nível de Salinidade dos Principais Açudes do Estado do Ceará. Fortaleza, COGERH/SEMACE, 2001.
- 08 CPRM, Vulnerabilidade Natural das Unidades Aqüíferas da Região do Cariri. Fortaleza, CPRM,1995. Vol 1. (Série Recursos Hídricos).
- 09 DNPM, Diagnóstico Mineral da Região do Cariri. Fortaleza, DNPM/CPRM, 1996. 41 p.
- 10 DUCKE, A., Estudos Botânicos do Ceará. Mossoró, ESAM, 1979. 130 p.
- 11 FERNANDES, A., Temas Fitogeográficos. Fortaleza, 1990. 205 p.
- 12 FUNCEME, **Projeto Áridas**. Fortaleza, FUNCEME, 1994. (Grupo de Trabalho 1 Recursos Naturais e Meio Ambiente).
- 13 HENRRIQUES, A.G., Aspectos Metodológicos da Avaliação de Impactos Ambientais de **Empreendimentos Hidráulicos**. Revista da Associação Portuguesa de Recursos Hídricos. V.6, n.º 1. 22p.
- 14 IBGE, Censo Demográfico, 1991. n.º 11 Ceará. Rio de Janeiro, IBGE, 1991. 523 p.
- 15 _____, Censo Demográfico, 2000 Ceará. Rio de Janeiro, IBGE, 2001.
- 16 INMET, Normais Climatológicas (1961-1990). Brasília, SPI/EMBRAPA, 1992. .84 p.
- 17 IPLANCE, Anuário Estatístico do Ceará, 1997. Fortaleza, IPLANCE, 1997. 2v.
- 18 JACOMINE, P.K.T. et alli, Levantamento Exploratório Reconhecimento de Solos do Estado do Ceará. Vol. I. Recife, SUDENE, 1973. 301 p.

- 19 JUREIDINI, P., **Autodepuração e Eutrofização: Conceitos, Causas e Conseqüências**. São Paulo. Instituto de Biociências da USP. 1987.
- 20 MME, **Projeto RADAMBRASIL, Levantamento de Recursos Naturais**. Folha SB. 24/25 Jaguaribe/Natal. Vol. 23. Rio de Janeiro, MME, 1981. 483 p.
- 21 MOTA, S., Preservação de Recursos Hídricos, Rio de Janeiro, ABES, 1988. 222 p.
- 22 NASCIMENTO, N.G., **Avaliação de Impactos Ambientais de Grandes Barragens: um estudo de caso**. Fortaleza, 1991. 203 p. (Tese de Mestrado).
- 23 PAIVA, M.P., Algumas Considerações sobre a Fauna da Região Semi-Árida do Nordeste Brasileiro. Coleção Mossoroense 404 Ser. B. Mossoró, ESAM, 1983. 31 p.
- 24 _____, Distribuição e Abundância de Alguns Mamíferos Selvagens no Estado do Ceará. Ciência e Cultura, Vol. 25, n.º 5, p. 442-450, 1973.
- 25 REY, L., **Prevenção dos Riscos para a Saúde Decorrentes dos Empreendimentos Hidráulicos**. Revista Médica de Moçambique, Vol. I, n.º 2. Moçambique, 1982. 7 p.
- 26 ROCHA, A.A., **Aspectos Biológicos a Serem Observados na Construção de Lagos Artificiais e Cuidados com a Preservação** . Belo Horizonte, 1986. 30 p.
- 27 SEARA, Zoneamento Agrícola do Estado do Ceará. Fortaleza, SEARA, 1988. 67p.
- 28 SEMA, Legislação Federal sobre Meio Ambiente Referências. Brasília, SEMA, 1986. 29 p.
- 29 _____, **Resoluções do CONAMA 1984/86**. Brasília, SEMA, 1986. 96 p.
- 30 SEMACE, Meio Ambiente. Legislação Básica. Fortaleza, SEMACE, 1990. 476 p.
- 31 SICK, H., Ornitologia Brasileira Uma Introdução. Brasília, Ed. da Universidade de Brasília, 1985.
- 32 SILVA, F.B.R. et alli, **Zoneamento Agroecológico do Nordeste: Diagnóstico do Quadro Natural e Agro-sócioeconômico**. Petrolina, EMBRAPA/CPATSA, 1993. 2 v.
- 33 SRH, Estudos de Viabilidade Técnica, Ambiental, Econômica e Financeira da Barragem Patos. Fortaleza, HIDROSTUDIO /ANB,2002.
- 34 , Plano Estadual dos Recursos Hídricos. Fortaleza, SRH-CE, 1992., 4 v.
- 35 TUNDISI, J.G., **Limnologia de Represas Artificiais**. Boletim de Hidráulica e Saneamento n.º 11. São Carlos, 1986. 41 p.

IV - RESENHA FOTOGRÁFICA

FOTO 01: Riacho Patos, no interior do futuro reservatório (12/04/02).

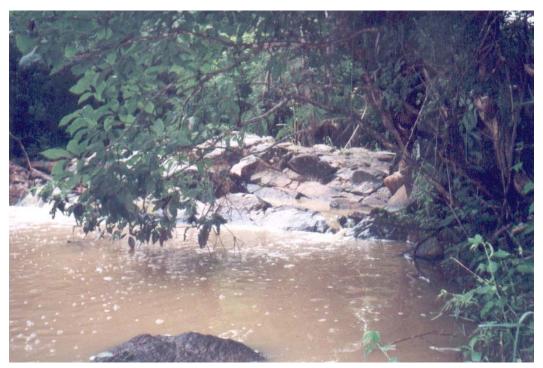


FOTO 02: Vista de jusante para montante (12/04/02).

FOTO 03: Arenito silicificado, com faixas silicáticas, aflorante no leito do riacho, cerca de 150 metros a montante do eixo (12/04/02).

FOTO 04: Margem esquerda do riacho, cerca de 50 metros a montante do eixo. Acamamento/fraturas abertas no arenito, em decorrência de alívio de tensões, talvez associado a corrosão de preenchimento calcítico (12/04/02).

FOTO 05: Leito do riacho no local do eixo barrável, com arenito silicificado aflorante. Vista de jusante para montante (12/04/02).

FOTO 06: Jusante do eixo barrável. Acamamento no arenito constituído por lamelas irregulares, selados, mergulhando 60º para jusante (Sul) (12/04/02).

FOTO 07: Margem esquerda do eixo barrável, em arenito silicificado aflorante (12/04/02).

FOTO 08: Vista do riacho Patos, observando-se a presença bastante comum de afloramentos rochosos no seu leito. Constata-se, ainda, a preservação de sua mata ciliar neste trecho.

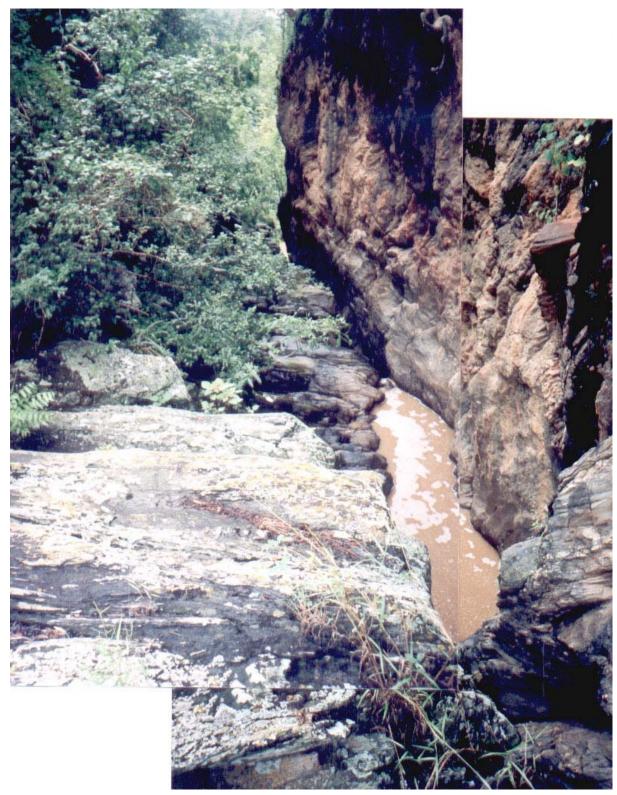


FOTO 09: Vista do "cannyon" em arenito, a jusante do eixo barrável. Não foram observados indícios de falhamento. A queda deve variar entre 15 e 20 metros (12/04/02).

FOTO 10: Vista da ombreira direita do barramento a partir do leito do riacho Patos. Observa-se que o vale apresenta-se bastante encaixado, não havendo formação de extensas áreas aluviais.

FOTO 11: Aparência apresentada pela vegetação de caatinga hiperxerófila, predominante na área da bacia hidráulica do reservatório, por ocasião do período de estiagem.

FOTO 12: Área de reservação de Nova Olinda

FOTO 13: Poço que faz parte do sistema de abastecimento d'água de Nova Olinda

FOTO 14: Vista parcial de Nova Olinda (detalhe do reservatório elevado da fábrica de gesso)

FOTO 15: Cidade de Nova Olinda - flagrante da precariedade do sistema de abastecimento d'água atual no atendimento da população dos bairros periféricos.